van der Waals Layered Materials: Opportunities and Challenges

被引:427
|
作者
Duong, Dinh Loc [1 ,2 ]
Yun, Seok Joon [1 ,2 ]
Lee, Young Hee [1 ,2 ,3 ]
机构
[1] IBS, Ctr Integrated Nanostruct Phys CINAP, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Phys, Suwon 16419, South Korea
关键词
two-dimensional materials; van der Waals interaction; heterostructures; Coulomb interaction; dielectric screening; phase engineering; proximity effects; multicarrier generation; contact resistance; HEXAGONAL BORON-NITRIDE; TRANSITION-METAL DICHALCOGENIDES; VAPOR-DEPOSITION GROWTH; BAND-GAP; BILAYER GRAPHENE; WAFER-SCALE; ELECTRONIC-STRUCTURE; CARBON NANOTUBES; EPITAXIAL-GROWTH; MONOLAYER MOS2;
D O I
10.1021/acsnano.7b07436
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.
引用
收藏
页码:11803 / 11830
页数:28
相关论文
共 50 条
  • [1] Hyperdislocations in van der Waals Layered Materials
    Ly, Thuc Hue
    Zhao, Jiong
    Keum, Dong Hoon
    Deng, Qingming
    Yu, Zhiyang
    Lee, Young Hee
    [J]. NANO LETTERS, 2016, 16 (12) : 7807 - 7813
  • [2] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    [J]. ACS NANO, 2022, 16 (05) : 7144 - 7167
  • [3] Spectroscopy of van der Waals nanomaterials: Opportunities and challenges
    Mambakkam, S., V
    Law, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2023, 134 (17)
  • [4] Ferroelectric order in van der Waals layered materials
    Dawei Zhang
    Peggy Schoenherr
    Pankaj Sharma
    Jan Seidel
    [J]. Nature Reviews Materials, 2023, 8 : 25 - 40
  • [5] Ferroelectric order in van der Waals layered materials
    Zhang, Dawei
    Schoenherr, Peggy
    Sharma, Pankaj
    Seidel, Jan
    [J]. NATURE REVIEWS MATERIALS, 2023, 8 (01) : 25 - 40
  • [6] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Dong-Hwan Choi
    Kyung-Ah Min
    Suklyun Hong
    Bum-Kyu Kim
    Myung-Ho Bae
    Ju-Jin Kim
    [J]. Scientific Reports, 11
  • [7] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Choi, Dong-Hwan
    Min, Kyung-Ah
    Hong, Suklyun
    Kim, Bum-Kyu
    Bae, Myung-Ho
    Kim, Ju-Jin
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene?
    Park, Je-Geun
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (30)
  • [9] Evaluation of van der Waals density functionals for layered materials
    Tawfik, Sherif Abdulkader
    Gould, Tim
    Stampfl, Catherine
    Ford, Michael J.
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (03):
  • [10] Tunable mosaic structures in van der Waals layered materials
    Quan, Silong
    He, Linghui
    Ni, Yong
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25428 - 25436