Federated learning via over-the-air computation in IRS-assisted UAV communications

被引:2
|
作者
Li, Ruijie [1 ]
Zhu, Li [1 ,2 ]
Zhang, Guoping [1 ]
Xu, Hongbo [1 ]
Chen, Yun [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
[2] Hubei Minzu Univ, Coll Intelligent Syst Sci & Engn, Enshi 445000, Peoples R China
关键词
OPTIMIZATION;
D O I
10.1038/s41598-023-34292-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intelligent reflective surface (IRS) and unmanned aerial vehicle (UAV) communication are two key technologies in the sixth generation of mobile communication (6G). In this paper, IRS is equipped on UAV to form aerial IRS, which can achieve 360 degrees panoramic full-angle reflection and flexible deployment of IRS. In order to achieve high-quality and ubiquitous network coverage under data privacy and low latency requirements, we propose an Federated learning (FL) network via Over-the-Air computation (AirComp) in IRS-assisted UAV communications. Our goal is to minimize the worst-case mean square error (MSE) by jointly optimizing the IRS phase shift, denoising factor for noise suppression, the user's transmission power, and UAV trajectory. Optimizing and quickly adjusting the UAV position and IRS phase shift, it flexibly assists the signal transmission between users and base stations (BS). In order to solve this complex non-convex problem, we propose a low-complexity iterative algorithm, which divides the original problem into four sub-problems, respectively using the semi-definite programming (SDP) method, slack variable introduction method, successive convex approximation (SCA) method to solve each sub-problem. Through the analysis of simulation results, our proposed design scheme is obviously better than other benchmark schemes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On-Device Federated Learning via Second-Order Optimization with Over-the-Air Computation
    Hua, Sheng
    Yang, Kai
    Shi, Yuanming
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [42] Energy and Spectrum Efficient Federated Learning via High-Precision Over-the-Air Computation
    Li, Liang
    Huang, Chenpei
    Shi, Dian
    Wang, Hao
    Zhou, Xiangwei
    Shu, Minglei
    Pan, Miao
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (02) : 1228 - 1242
  • [43] Broadband Digital Over-the-Air Computation for Wireless Federated Edge Learning
    You, Lizhao
    Zhao, Xinbo
    Cao, Rui
    Shao, Yulin
    Fu, Liqun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5212 - 5228
  • [44] Broadband Digital Over-the-Air Computation for Asynchronous Federated Edge Learning
    Zhao, Xinbo
    You, Lizhao
    Rui Cao
    Shao, Yulin
    Fu, Liqun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5359 - 5364
  • [45] Empowering over-the-air personalized federated learning via RIS
    Wei SHI
    Jiacheng YAO
    Jindan XU
    Wei XU
    Lexi XU
    Chunming ZHAO
    Science China(Information Sciences), 2024, 67 (11) : 371 - 372
  • [46] Over-the-Air Federated Graph Learning
    Wang, Zixin
    Zhou, Yong
    Shi, Yuanming
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 18669 - 18683
  • [47] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893
  • [48] Federated Learning in Wireless Networks via Over-the-Air Computations
    Oksuz, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4379 - 4386
  • [49] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [50] Over-the-Air Decentralized Federated Learning
    Shi, Yandong
    Zhou, Yong
    Shi, Yuanming
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 455 - 460