Nonlinear Landau-Zener tunneling under higher-order dispersion

被引:4
|
作者
Cao, Y. [1 ]
Xu, T. F. [1 ]
机构
[1] Yanshan Univ, Sch Sci, Hebei Key Lab Microstruct Mat Phys, Qinhuangdao 066004, Peoples R China
关键词
D O I
10.1103/PhysRevA.107.032420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We studied nonlinear Landau-Zener tunneling under the effect of higher-order dispersion, transformed the Gross-Pitaevskii (GP) equation with higher-order dispersion terms into a nonlinear two-energy level form using a two-mode approximation, and comprehensively analyzed the loop structure of the lowest-energy band and the nonlinear Landau-Zener tunneling. The results show that, when third-order dispersion coefficient is not zero, there is a spatial inversion symmetry breaking of the energy band structure and unbalanced Landau-Zener tunneling. By analyzing the fixed point's nature of the classical Hamiltonian, we obtain a law for the variation of the loop structure and adiabatic tunneling probability with the dispersion coefficient, consistent with our numerical analysis results. In addition, we analyzed the real-time evolution of solitons with transverse bias and observed the tunneling phenomenon. Consistent with our analysis, the adjustment of the dispersion term can effectively control optical tunneling, which provides an alternative idea for optical switching.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Landau-Zener dynamics of a nanoresonator containing a tunneling spin
    O'Keeffe, Michael F.
    Chudnovsky, Eugene M.
    Garanin, Dmitry A.
    PHYSICAL REVIEW B, 2013, 87 (17):
  • [32] Enhancement of macroscopic quantum tunneling by Landau-Zener transitions
    Ankerhold, J
    Grabert, H
    PHYSICAL REVIEW LETTERS, 2003, 91 (01)
  • [33] Higher-order exceptional point and Landau-Zener Bloch oscillations in driven non-Hermitian photonic Lieb lattices
    Xia, Shiqiang
    Danieli, Carlo
    Zhang, Yingying
    Zhao, Xingdong
    Lu, Hai
    Tang, Liqin
    Li, Denghui
    Song, Daohong
    Chen, Zhigang
    APL PHOTONICS, 2021, 6 (12)
  • [34] Coherent destruction of tunneling, dynamic localization, and the Landau-Zener formula
    Kayanuma, Yosuke
    Saito, Keiji
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [35] Nonequilibrium Landau-Zener tunneling in exciton-polariton condensates
    Xu, Xingran
    Zhang, Zhidong
    Liang, Zhaoxin
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [36] Quantum Information Transfer in Circuit QED with Landau-Zener Tunneling
    Li Jun-Wang
    Wu Chun-Wang
    Dai Hong-Yi
    CHINESE PHYSICS LETTERS, 2011, 28 (09)
  • [37] All-optical Landau-Zener tunneling in waveguide arrays
    Fratalocchi, A
    Assanto, G
    OPTICS EXPRESS, 2006, 14 (05) : 2021 - 2026
  • [38] Photonic Floquet Landau-Zener tunneling and temporal beam splitters
    Wang, Shulin
    Qin, Chengzhi
    Zhao, Lange
    Ye, Han
    Longhi, Stefano
    Lu, Peixiang
    Wang, Bing
    SCIENCE ADVANCES, 2023, 9 (18)
  • [39] Two-level model of light propagation in photonic lattices and nonlinear Landau-Zener tunneling
    Wang Sha
    Yang Zhi-An
    ACTA PHYSICA SINICA, 2009, 58 (06) : 3699 - 3706
  • [40] liner Landau-Zener tunneling of a Bose-Fermi mixture
    Zhang Heng
    Wang Wen-Yuan
    Meng Hong-Juan
    Ma Ying
    Ma Yun-Yun
    Duan Wen-Shan
    ACTA PHYSICA SINICA, 2013, 62 (11)