Nonlinear Landau-Zener tunneling under higher-order dispersion

被引:4
|
作者
Cao, Y. [1 ]
Xu, T. F. [1 ]
机构
[1] Yanshan Univ, Sch Sci, Hebei Key Lab Microstruct Mat Phys, Qinhuangdao 066004, Peoples R China
关键词
D O I
10.1103/PhysRevA.107.032420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We studied nonlinear Landau-Zener tunneling under the effect of higher-order dispersion, transformed the Gross-Pitaevskii (GP) equation with higher-order dispersion terms into a nonlinear two-energy level form using a two-mode approximation, and comprehensively analyzed the loop structure of the lowest-energy band and the nonlinear Landau-Zener tunneling. The results show that, when third-order dispersion coefficient is not zero, there is a spatial inversion symmetry breaking of the energy band structure and unbalanced Landau-Zener tunneling. By analyzing the fixed point's nature of the classical Hamiltonian, we obtain a law for the variation of the loop structure and adiabatic tunneling probability with the dispersion coefficient, consistent with our numerical analysis results. In addition, we analyzed the real-time evolution of solitons with transverse bias and observed the tunneling phenomenon. Consistent with our analysis, the adjustment of the dispersion term can effectively control optical tunneling, which provides an alternative idea for optical switching.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Nonlinear Landau-Zener Formula
    Rémi Carles
    Clotilde Fermanian-Kammerer
    Journal of Statistical Physics, 2013, 152 : 619 - 656
  • [22] A Nonlinear Landau-Zener Formula
    Carles, Remi
    Fermanian-Kammerer, Clotilde
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (04) : 619 - 656
  • [23] Nonlinear Landau-Zener tunneling in two-dimensional photonic lattices
    Wang Sha
    Yang Zhi-An
    ACTA PHYSICA SINICA, 2009, 58 (02) : 729 - 733
  • [24] How Landau-Zener tunneling takes time
    Niu, Q
    Raizen, MG
    PHYSICAL REVIEW LETTERS, 1998, 80 (16) : 3491 - 3494
  • [25] Landau-Zener Tunneling for Dephasing Lindblad Evolutions
    Avron, J. E.
    Fraas, M.
    Graf, G. M.
    Grech, P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (03) : 633 - 639
  • [26] Landau-Zener tunneling problem for Bloch states
    Takahashi, Ryuji
    Sugimoto, Naoyuki
    PHYSICAL REVIEW B, 2017, 95 (22)
  • [27] Classical analog of quasilinear Landau-Zener tunneling
    Kovaleva, Agnessa
    Manevitch, Leonid I.
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [28] Landau-Zener Tunneling for Dephasing Lindblad Evolutions
    J. E. Avron
    M. Fraas
    G. M. Graf
    P. Grech
    Communications in Mathematical Physics, 2011, 305 : 633 - 639
  • [29] Landau-Zener quantum tunneling in disordered nanomagnets
    Benza, VG
    Canali, CM
    Strini, G
    PHYSICAL REVIEW B, 2004, 70 (18) : 1 - 9
  • [30] Landau-Zener tunneling in the process of sum frequency generation
    Li, Baihong
    Li, Yongfang
    INTERNATIONAL SYMPOSIUM ON PHOTONICS AND OPTOELECTRONICS 2014, 2014, 9233