Nonlinear Landau-Zener tunneling under higher-order dispersion

被引:4
|
作者
Cao, Y. [1 ]
Xu, T. F. [1 ]
机构
[1] Yanshan Univ, Sch Sci, Hebei Key Lab Microstruct Mat Phys, Qinhuangdao 066004, Peoples R China
关键词
D O I
10.1103/PhysRevA.107.032420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We studied nonlinear Landau-Zener tunneling under the effect of higher-order dispersion, transformed the Gross-Pitaevskii (GP) equation with higher-order dispersion terms into a nonlinear two-energy level form using a two-mode approximation, and comprehensively analyzed the loop structure of the lowest-energy band and the nonlinear Landau-Zener tunneling. The results show that, when third-order dispersion coefficient is not zero, there is a spatial inversion symmetry breaking of the energy band structure and unbalanced Landau-Zener tunneling. By analyzing the fixed point's nature of the classical Hamiltonian, we obtain a law for the variation of the loop structure and adiabatic tunneling probability with the dispersion coefficient, consistent with our numerical analysis results. In addition, we analyzed the real-time evolution of solitons with transverse bias and observed the tunneling phenomenon. Consistent with our analysis, the adjustment of the dispersion term can effectively control optical tunneling, which provides an alternative idea for optical switching.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nonlinear Landau-Zener tunneling
    Wu, Biao
    Niu, Qian
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 234021 - 234024
  • [2] Nonlinear Landau-Zener tunneling
    Wu, B
    Niu, Q
    PHYSICAL REVIEW A, 2000, 61 (02): : 4
  • [3] Nonlinear Landau-Zener tunneling under biharmonic driving
    Luo, Xiaobing
    Luo, Senping
    Xu, Jun
    Chen, Jinwang
    PHYSICA B-CONDENSED MATTER, 2011, 406 (09) : 1795 - 1798
  • [4] Theory of nonlinear Landau-Zener tunneling
    Liu, J
    Fu, LB
    Ou, BY
    Chen, SG
    Choi, DI
    Wu, B
    Niu, Q
    PHYSICAL REVIEW A, 2002, 66 (02): : 1 - 7
  • [5] Landau-Zener transitions through a pair of higher-order exceptional points
    Melanathuru, Rishindra
    Malzard, Simon
    Graefe, Eva-Maria
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [6] Engineering of Landau-Zener tunneling
    Tayebirad, G.
    Mannella, R.
    Wimberger, S.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 102 (03): : 489 - 495
  • [7] Nonlinear Landau-Zener tunneling in quantum phase space
    Trimborn, F.
    Witthaut, D.
    Kegel, V.
    Korsch, H. J.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [8] Effects of periodic modulation on the nonlinear Landau-Zener tunneling
    Wu Li-Hua
    Duan Wen-Shan
    CHINESE PHYSICS B, 2009, 18 (10) : 4110 - 4116
  • [9] Nonlinear Landau-Zener tunneling in coupled waveguide arrays
    Khomeriki, Ramaz
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [10] Nonreciprocal Landau-Zener tunneling
    Kitamura, Sota
    Nagaosa, Naoto
    Morimoto, Takahiro
    COMMUNICATIONS PHYSICS, 2020, 3 (01)