Predicting S. aureus antimicrobial resistance with interpretable genomic space maps

被引:1
|
作者
Pikalyova, Karina [1 ]
Orlov, Alexey [1 ]
Horvath, Dragos [1 ]
Marcou, Gilles [1 ]
Varnek, Alexandre [1 ,2 ]
机构
[1] Univ Strasbourg, Lab Chemoinformat, UMR 7140, Strasbourg, France
[2] Univ Strasbourg, Lab Chemoinformat, UMR 7140, 1 Rue Blaise Pascal, F-67000 Strasbourg, France
关键词
antibiotic resistance; generative topographic mapping; genomic space visualization; multi-task learning; S. aureus genome; POPULATION; GTM;
D O I
10.1002/minf.202300263
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Increasing antimicrobial resistance (AMR) represents a global healthcare threat. To decrease the spread of AMR and associated mortality, methods for rapid selection of optimal antibiotic treatment are urgently needed. Machine learning (ML) models based on genomic data to predict resistant phenotypes can serve as a fast screening tool prior to phenotypic testing. Nonetheless, many existing ML methods lack interpretability. Therefore, we present a methodology for visualization of sequence space and AMR prediction based on the non-linear dimensionality reduction method - generative topographic mapping (GTM). This approach, applied to AMR data of >5000 S. aureus isolates retrieved from the PATRIC database, yielded GTM models with reasonable accuracy for all drugs (balanced accuracy values >= 0.75). The Generative Topographic Maps (GTMs) represent data in the form of illustrative maps of the genomic space and allow for antibiotic-wise comparison of resistant phenotypes. The maps were also found to be useful for the analysis of genetic determinants responsible for drug resistance. Overall, the GTM-based methodology is a useful tool for both the illustrative exploration of the genomic sequence space and AMR prediction.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Development of Antimicrobial Peptide-based Radiopharmaceuticals in Radiotheranostics of S. aureus Infection
    Jiang, S.
    Zhang, S.
    Wang, R.
    Hu, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S822 - S822
  • [32] Antimicrobial susceptibility of Staphylococcus aureus and molecular epidemiology of meticillin-resistant S. aureus isolated from Australian hospital inpatients: Report from the Australian Group on Antimicrobial Resistance 2011 Staphylococcus aureus Surveillance Programme
    Coombs, Geoffrey W.
    Pearson, Julie C.
    Nimmo, Graeme R.
    Collignon, Peter J.
    Bell, Jan M.
    McLaws, Mary-Louise
    Christiansen, Keryn J.
    Turnidge, John D.
    JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 2013, 1 (03) : 149 - 156
  • [33] Antimicrobial peptides in nasal secretion and mucosa with respect to S. aureus colonisation in Wegener's granulomatosis
    Hui, Y.
    Wohlers, J.
    Podschun, R.
    Hedderich, J.
    Lamprecht, P.
    Ambrosch, P.
    Laudien, M.
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2011, 29 (01) : S49 - S56
  • [34] Genetic basis of penicillin resistance of S. aureus isolated in bovine mastitis
    Bagcigil, Arzu Funda
    Taponen, Suvi
    Koort, Joanna
    Bengtsson, Bjorn
    Myllyniemi, Anna-Liisa
    Pyorala, Satu
    ACTA VETERINARIA SCANDINAVICA, 2012, 54
  • [35] The gene contents and the antibiotic resistance phenotypes of the S. aureus clinical isolates
    Junie, Lia Monica
    Simon, L. M.
    Flonta, M.
    Almasanu, A.
    Homorodean, D.
    Ilie, R.
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2013, 32 : S64 - S64
  • [36] Genetic basis of penicillin resistance of S. aureus isolated in bovine mastitis
    Arzu Funda Bagcigil
    Suvi Taponen
    Joanna Koort
    Björn Bengtsson
    Anna-Liisa Myllyniemi
    Satu Pyörälä
    Acta Veterinaria Scandinavica, 54
  • [37] Antibiotic resistance of S. aureus on a 'bifunctional' surface: An in vitro coculture study
    Tran, Hien A.
    Tran, My Hoai
    Tran, Phong A.
    MATERIALS LETTERS, 2020, 280
  • [38] Multiple norA promoter mutation leading to ciprofloxacin resistance in S. aureus
    De Medina, GD
    Bellido, M
    Padilla, P
    Rodríguez, G
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2004, 24 : S201 - S201
  • [39] Predicting Antimicrobial Resistance and Associated Genomic Features from Whole-Genome Sequencing
    Monk, Jonathan M.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2019, 57 (02)
  • [40] Contemporary Treatment of Antimicrobial Resistant S. aureus, HCV and HIV infection: A Case Study
    Bassey, Gertrude
    Einstein, George
    Tulp, Orien
    FASEB JOURNAL, 2020, 34