Predicting S. aureus antimicrobial resistance with interpretable genomic space maps

被引:1
|
作者
Pikalyova, Karina [1 ]
Orlov, Alexey [1 ]
Horvath, Dragos [1 ]
Marcou, Gilles [1 ]
Varnek, Alexandre [1 ,2 ]
机构
[1] Univ Strasbourg, Lab Chemoinformat, UMR 7140, Strasbourg, France
[2] Univ Strasbourg, Lab Chemoinformat, UMR 7140, 1 Rue Blaise Pascal, F-67000 Strasbourg, France
关键词
antibiotic resistance; generative topographic mapping; genomic space visualization; multi-task learning; S. aureus genome; POPULATION; GTM;
D O I
10.1002/minf.202300263
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Increasing antimicrobial resistance (AMR) represents a global healthcare threat. To decrease the spread of AMR and associated mortality, methods for rapid selection of optimal antibiotic treatment are urgently needed. Machine learning (ML) models based on genomic data to predict resistant phenotypes can serve as a fast screening tool prior to phenotypic testing. Nonetheless, many existing ML methods lack interpretability. Therefore, we present a methodology for visualization of sequence space and AMR prediction based on the non-linear dimensionality reduction method - generative topographic mapping (GTM). This approach, applied to AMR data of >5000 S. aureus isolates retrieved from the PATRIC database, yielded GTM models with reasonable accuracy for all drugs (balanced accuracy values >= 0.75). The Generative Topographic Maps (GTMs) represent data in the form of illustrative maps of the genomic space and allow for antibiotic-wise comparison of resistant phenotypes. The maps were also found to be useful for the analysis of genetic determinants responsible for drug resistance. Overall, the GTM-based methodology is a useful tool for both the illustrative exploration of the genomic sequence space and AMR prediction.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Staphylococcus aureus (S. aureus) mastitis modulates expression of antimicrobial peptides dependent on Holstein genotype
    Petzl, W.
    Macias-Luaces, L.
    Rohmeier, L.
    Meyerholz, M. M.
    Guenther, J.
    Schuberth, H. J.
    Engelmann, S.
    Kuehn, C.
    Hoedemaker, M.
    Zerbe, H.
    REPRODUCTION IN DOMESTIC ANIMALS, 2019, 54 : 18 - 18
  • [22] Comparing Selection on S. aureus between Antimicrobial Peptides and Common Antibiotics
    Dobson, Adam J.
    Purves, Joanne
    Kamysz, Wojciech
    Rolff, Jens
    PLOS ONE, 2013, 8 (10):
  • [23] Meticilin-resistance s. aureus profile in our area
    Pizarro Pena, E.
    Ruiz Artero, M.
    El Hadi Barghout, A.
    Jordano Montilla, A.
    Gascon Luna, F.
    CLINICA CHIMICA ACTA, 2024, 558 : 22 - 23
  • [24] Simultaneous breakdown of multiple antibiotic resistance mechanisms in S. aureus
    Kaneti, Galoz
    Sarig, Hadar
    Marjieh, Ibrahim
    Fadia, Zaknoon
    Mor, Amram
    FASEB JOURNAL, 2013, 27 (12): : 4834 - 4843
  • [25] An Antimicrobial Stewardship Program's Impact with Rapid Polymerase Chain Reaction Methicillin- Resistant Staphylococcus aureus/S. aureus Blood Culture Test in Patients with S. aureus Bacteremia
    Bauer, Karri A.
    West, Jessica E.
    Balada-Llasat, Joan-Miquel
    Pancholi, Preeti
    Stevenson, Kurt B.
    Goff, Debra A.
    CLINICAL INFECTIOUS DISEASES, 2010, 51 (09) : 1074 - 1080
  • [26] Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles
    Gonzalez-Dominguez, Maria S.
    Carvajal, Hernan D.
    Calle-Echeverri, David A.
    Chinchilla-Cardenas, Danny
    FRONTIERS IN VETERINARY SCIENCE, 2020, 7
  • [27] Antimicrobial resistance and genomic insights into bovine mastitis-associated Staphylococcus aureus in Australia
    O'Dea, Mark
    Abraham, Rebecca J.
    Sahibzada, Shafi
    Lee, Terence
    Jordan, David
    Laird, Tanya
    Pang, Stanley
    Buller, Nicky
    Stegger, Marc
    Coombs, Geoffrey W.
    Trott, Darren J.
    Abraham, Sam
    VETERINARY MICROBIOLOGY, 2020, 250
  • [28] A genomic data resource for predicting antimicrobial resistance from laboratory-derived antimicrobial susceptibility phenotypes
    VanOeffelen, Margo
    Nguyen, Marcus
    Aytan-Aktug, Derya
    Brettin, Thomas
    Dietrich, Emily M.
    Kenyon, Ronald W.
    Machi, Dustin
    Mao, Chunhong
    Olson, Robert
    Pusch, Gordon D.
    Shukla, Maulik
    Stevens, Rick
    Vonstein, Veronika
    Warren, Andrew S.
    Wattam, Alice R.
    Yoo, Hyunseung
    Davis, James J.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [29] Impact of Riboflavin Photodynamic Antimicrobial Therapy (PDAT) on S. aureus Virulence Factors
    Miller, Darlene
    Durkee, Heather Ann
    Aguilar, Mariela C.
    Arboleda, Alejandro
    Relhan, Nidhi
    Amescua, Guillermo
    Parel, Jean-Marie A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [30] Increased S. aureus colonization and reduced antimicrobial peptide expression in erythrodermic psoriasis
    Liu, Yuhua
    Wu, Xiaoyan
    Song, Pengfei
    Liu, Leying
    Zhong, Xinyu
    He, Qin
    Zhang, Zhenying
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 127