Predicting S. aureus antimicrobial resistance with interpretable genomic space maps

被引:1
|
作者
Pikalyova, Karina [1 ]
Orlov, Alexey [1 ]
Horvath, Dragos [1 ]
Marcou, Gilles [1 ]
Varnek, Alexandre [1 ,2 ]
机构
[1] Univ Strasbourg, Lab Chemoinformat, UMR 7140, Strasbourg, France
[2] Univ Strasbourg, Lab Chemoinformat, UMR 7140, 1 Rue Blaise Pascal, F-67000 Strasbourg, France
关键词
antibiotic resistance; generative topographic mapping; genomic space visualization; multi-task learning; S. aureus genome; POPULATION; GTM;
D O I
10.1002/minf.202300263
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Increasing antimicrobial resistance (AMR) represents a global healthcare threat. To decrease the spread of AMR and associated mortality, methods for rapid selection of optimal antibiotic treatment are urgently needed. Machine learning (ML) models based on genomic data to predict resistant phenotypes can serve as a fast screening tool prior to phenotypic testing. Nonetheless, many existing ML methods lack interpretability. Therefore, we present a methodology for visualization of sequence space and AMR prediction based on the non-linear dimensionality reduction method - generative topographic mapping (GTM). This approach, applied to AMR data of >5000 S. aureus isolates retrieved from the PATRIC database, yielded GTM models with reasonable accuracy for all drugs (balanced accuracy values >= 0.75). The Generative Topographic Maps (GTMs) represent data in the form of illustrative maps of the genomic space and allow for antibiotic-wise comparison of resistant phenotypes. The maps were also found to be useful for the analysis of genetic determinants responsible for drug resistance. Overall, the GTM-based methodology is a useful tool for both the illustrative exploration of the genomic sequence space and AMR prediction.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Forecasting the development of antimicrobial resistance of S. aureus
    Shemetov, Oleh
    Faustova, Mariia
    Perepelova, Tetiana
    Balia, Hennadii
    Pavlish, Ihor
    Loban', Galina
    FRONTIERS IN ORAL HEALTH, 2025, 5
  • [2] Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia
    Alem Abrha Kalayu
    Daniel Asrat Woldetsadik
    Yimtubezinash Woldeamanuel
    Shu-Hua Wang
    Wondwossen A. Gebreyes
    Tadesse Teferi
    BMC Veterinary Research, 16
  • [3] Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia
    Kalayu, Alem Abrha
    Woldetsadik, Daniel Asrat
    Woldeamanuel, Yimtubezinash
    Wang, Shu-Hua
    Gebreyes, Wondwossen A.
    Teferi, Tadesse
    BMC VETERINARY RESEARCH, 2020, 16 (01)
  • [4] S. aureus Biofilm Protein Expression Linked to Antimicrobial Resistance: A Proteomic Study
    Piras, Cristian
    Di Ciccio, Pierluigi Aldo
    Soggiu, Alessio
    Greco, Viviana
    Tilocca, Bruno
    Costanzo, Nicola
    Ceniti, Carlotta
    Urbani, Andrea
    Bonizzi, Luigi
    Ianieri, Adriana
    Roncada, Paola
    ANIMALS, 2021, 11 (04):
  • [5] Utility of prior screening for methicillin-resistant Staphylococcus aureus in predicting resistance of S. aureus infections
    MacFadden, Derek R.
    Elligsen, Marion
    Robicsek, Ari
    Ricciuto, Daniel R.
    Daneman, Nick
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2013, 185 (15) : E725 - E730
  • [6] Role for S. aureus in insulin resistance
    Greenhill, Claire
    NATURE REVIEWS ENDOCRINOLOGY, 2018, 14 (07) : 381 - 381
  • [7] Role for S. aureus in insulin resistance
    Claire Greenhill
    Nature Reviews Endocrinology, 2018, 14 (7) : 381 - 381
  • [8] Methicillin resistance of S. aureus bloodstream infections: The data of 15 years Methicillin resistance of S. aureus infections
    Celebi, Fatma Zehra Oztek
    Samli, Asuman
    Yucel, Husniye
    Senel, Saliha
    ANNALS OF CLINICAL AND ANALYTICAL MEDICINE, 2021, 12 (09): : 1026 - 1030
  • [9] Identification of four genes responsible for antimicrobial resistance of MEL-B against S. aureus
    Yamauchi, Shinya
    Shimoda, So
    Kawahara, Akio
    Sugahara, Tomohiro
    Yamamoto, Shuhei
    Kitabayashi, Masao
    Sogabe, Atsushi
    Jansen, Christine A.
    Tobe, Ryuta
    Hirakawa, Ryota
    Islam, Jahidul
    Furukawa, Mutsumi
    Yoneyama, Hiroshi
    Nochi, Tomonori
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 699
  • [10] Antimicrobial overuse and misuse in the community in Greece and link to antimicrobial resistance using methicillin-resistant S. aureus as an example
    Karakonstantis, Stamatis
    Kalemaki, Dimitra
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2019, 12 (04) : 460 - 464