Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study

被引:13
|
作者
Du, Yu [1 ]
Cai, Mengjun [1 ]
Zha, Hailing [1 ]
Chen, Baoding [2 ]
Gu, Jun [3 ]
Zhang, Manqi [1 ]
Liu, Wei [1 ]
Liu, Xinpei [1 ]
Liu, Xiaoan [4 ]
Zong, Min [5 ]
Li, Cuiying [1 ]
机构
[1] Nanjing Med Univ, Dept Ultrasound, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
[2] Jiangsu Univ, Dept Ultrasound, Affiliated Hosp, 438 Jiefang Rd, Zhenjiang 212050, Peoples R China
[3] Affiliated Suzhou Hosp Nanjing Med Univ, Suzhou Municipal Hosp, Dept Ultrasound, Suzhou 215002, Peoples R China
[4] Nanjing Med Univ, Dept Breast Surg, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
[5] Nanjing Med Univ, Dept Radiol, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
关键词
Breast neoplasms; Lymphovascular invasion; Radiomics; Nomogram; Ultrasonography; PREOPERATIVE PREDICTION; UROTHELIAL CARCINOMA; FEATURE-SELECTION; VESSEL INVASION; RECURRENCE; EXPRESSION; RECEPTOR; SURVIVAL; SUBTYPE; IMPACT;
D O I
10.1007/s00330-023-09995-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop and validate an ultrasound (US) radiomics-based nomogram for the preoperative prediction of the lymphovascular invasion (LVI) status in patients with invasive breast cancer (IBC).Materials and methodsIn this multicentre, retrospective study, 456 consecutive women were enrolled from three institutions. Institutions 1 and 2 were used to train (n = 320) and test (n = 136), and 130 patients from institution 3 were used for external validation. Radiomics features that reflected tumour information were derived from grey-scale US images. The least absolute shrinkage and selection operator and the maximum relevance minimum redundancy (mRMR) algorithm were used for feature selection and radiomics signature (RS) building. US radiomics-based nomogram was constructed by using multivariable logistic regression analysis. Predictive performance was assessed with the receiving operating characteristic curve, discrimination, and calibration.ResultsThe nomogram based on clinico-ultrasonic features (menopausal status, US-reported lymph node status, posterior echo features) and RS yielded an optimal AUC of 0.88 (95% confidence interval [CI], 0.84-0.91), 0.89 (95% CI, 0.84-0.94) and 0.95 (95% CI, 0.92-0.99) in the training, internal and external validation cohort. The nomogram outperformed the clinico-ultrasonic and RS model (p < 0.05). The nomogram performed favourable discrimination (C-index, 0.88; 95% CI: 0.84-0.91) and was confirmed in the validation (0.88 for internal, 0.95 for external) cohorts. The calibration and decision curve demonstrated the nomogram showed good calibration and was clinically useful.ConclusionsThe radiomics nomogram incorporated in the RS and US and the clinical findings exhibited favourable preoperative individualised prediction of LVI.
引用
收藏
页码:136 / 148
页数:13
相关论文
共 50 条
  • [21] Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics
    Liu, Zhuangsheng
    Feng, Bao
    Li, Changlin
    Chen, Yehang
    Chen, Qinxian
    Li, Xiaoping
    Guan, Jianhua
    Chen, Xiangmeng
    Cui, Enming
    Li, Ronggang
    Li, Zhi
    Long, Wansheng
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (03) : 847 - 857
  • [22] Development of Clinical Radiomics-Based Models to Predict Survival Outcome in Pancreatic Ductal Adenocarcinoma: A Multicenter Retrospective Study
    Mokhtari, Ayoub
    Casale, Roberto
    Salahuddin, Zohaib
    Paquier, Zelda
    Guiot, Thomas
    Woodruff, Henry C.
    Lambin, Philippe
    Van Laethem, Jean-Luc
    Hendlisz, Alain
    Bali, Maria Antonietta
    DIAGNOSTICS, 2024, 14 (07)
  • [23] A nomogram for predicting lymphovascular invasion in lung adenocarcinoma: a retrospective study
    Lin, Miaomaio
    Zhao, Xiang
    Huang, Haipeng
    Lin, Huashan
    Li, Kai
    BMC PULMONARY MEDICINE, 2024, 24 (01):
  • [24] Prognostic significance and value of further classification of lymphovascular invasion in invasive breast cancer: a retrospective observational study
    Zhang, Yuyang
    Wang, Huali
    Zhao, Huahui
    He, Xueming
    Wang, Ya
    Wang, Hongjiang
    BREAST CANCER RESEARCH AND TREATMENT, 2024, 206 (02) : 397 - 410
  • [25] Ultrasound-based radiomics nomogram for predicting axillary lymph node metastasis in invasive breast cancer
    Ye, Xiaolu
    Zhang, Xiaoxue
    Lin, Zhuangteng
    Liang, Ting
    Liu, Ge
    Zhao, Ping
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2024, 16 (06): : 2398 - 2410
  • [26] Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer
    Zheng, Hong
    Jian, Lian
    Li, Li
    Liu, Wen
    Chen, Wei
    ACADEMIC RADIOLOGY, 2024, 31 (05) : 1762 - 1772
  • [27] Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer
    Yu, Fei-Hong
    Wang, Jian-Xiang
    Ye, Xin-Hua
    Deng, Jing
    Hang, Jing
    Yang, Bin
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 119
  • [28] An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer
    Wu, Yu-quan
    Gao, Rui-zhi
    Lin, Peng
    Wen, Rong
    Li, Hai-yuan
    Mou, Mei-yan
    Chen, Feng-huan
    Huang, Fen
    Zhou, Wei-jie
    Yang, Hong
    He, Yun
    Wu, Ji
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [29] Ultrasound-based radiomics nomogram for distinguishing invasive breast cancer (IBC) from invasive breast cancer with intraductal component (IBC-IC)
    Xie, Jingwen
    Tang, Pan
    Zhang, Jianxing
    Deng, Yaohong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)
  • [30] An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer
    Yu-quan Wu
    Rui-zhi Gao
    Peng Lin
    Rong Wen
    Hai-yuan Li
    Mei-yan Mou
    Feng-huan Chen
    Fen Huang
    Wei-jie Zhou
    Hong Yang
    Yun He
    Ji Wu
    BMC Medical Imaging, 22