Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study

被引:13
|
作者
Du, Yu [1 ]
Cai, Mengjun [1 ]
Zha, Hailing [1 ]
Chen, Baoding [2 ]
Gu, Jun [3 ]
Zhang, Manqi [1 ]
Liu, Wei [1 ]
Liu, Xinpei [1 ]
Liu, Xiaoan [4 ]
Zong, Min [5 ]
Li, Cuiying [1 ]
机构
[1] Nanjing Med Univ, Dept Ultrasound, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
[2] Jiangsu Univ, Dept Ultrasound, Affiliated Hosp, 438 Jiefang Rd, Zhenjiang 212050, Peoples R China
[3] Affiliated Suzhou Hosp Nanjing Med Univ, Suzhou Municipal Hosp, Dept Ultrasound, Suzhou 215002, Peoples R China
[4] Nanjing Med Univ, Dept Breast Surg, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
[5] Nanjing Med Univ, Dept Radiol, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
关键词
Breast neoplasms; Lymphovascular invasion; Radiomics; Nomogram; Ultrasonography; PREOPERATIVE PREDICTION; UROTHELIAL CARCINOMA; FEATURE-SELECTION; VESSEL INVASION; RECURRENCE; EXPRESSION; RECEPTOR; SURVIVAL; SUBTYPE; IMPACT;
D O I
10.1007/s00330-023-09995-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop and validate an ultrasound (US) radiomics-based nomogram for the preoperative prediction of the lymphovascular invasion (LVI) status in patients with invasive breast cancer (IBC).Materials and methodsIn this multicentre, retrospective study, 456 consecutive women were enrolled from three institutions. Institutions 1 and 2 were used to train (n = 320) and test (n = 136), and 130 patients from institution 3 were used for external validation. Radiomics features that reflected tumour information were derived from grey-scale US images. The least absolute shrinkage and selection operator and the maximum relevance minimum redundancy (mRMR) algorithm were used for feature selection and radiomics signature (RS) building. US radiomics-based nomogram was constructed by using multivariable logistic regression analysis. Predictive performance was assessed with the receiving operating characteristic curve, discrimination, and calibration.ResultsThe nomogram based on clinico-ultrasonic features (menopausal status, US-reported lymph node status, posterior echo features) and RS yielded an optimal AUC of 0.88 (95% confidence interval [CI], 0.84-0.91), 0.89 (95% CI, 0.84-0.94) and 0.95 (95% CI, 0.92-0.99) in the training, internal and external validation cohort. The nomogram outperformed the clinico-ultrasonic and RS model (p < 0.05). The nomogram performed favourable discrimination (C-index, 0.88; 95% CI: 0.84-0.91) and was confirmed in the validation (0.88 for internal, 0.95 for external) cohorts. The calibration and decision curve demonstrated the nomogram showed good calibration and was clinically useful.ConclusionsThe radiomics nomogram incorporated in the RS and US and the clinical findings exhibited favourable preoperative individualised prediction of LVI.
引用
收藏
页码:136 / 148
页数:13
相关论文
共 50 条
  • [11] Ultrasonic radiomics-based nomogram for preoperative prediction of residual tumor in advanced epithelial ovarian cancer: a multicenter retrospective study
    Li, Shanshan
    Ding, Qiuping
    Li, Lijuan
    Liu, Yuwei
    Zou, Hanyu
    Wang, Yushuang
    Wang, Xiangyu
    Deng, Bingqing
    Ai, Qingxiu
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [12] Preoperative Prediction of Lymphovascular Space Invasion in Cervical Cancer With Radiomics - Based Nomogram
    Du, Wei
    Wang, Yu
    Li, Dongdong
    Xia, Xueming
    Tan, Qiaoyue
    Xiong, Xiaoming
    Li, Zhiping
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [13] MRI-Based Radiomics for Preoperative Prediction of Lymphovascular Invasion in Patients With Invasive Breast Cancer
    Nijiati, Mayidili
    Aihaiti, Diliaremu
    Huojia, Aisikaerjiang
    Abulizi, Abudukeyoumujiang
    Mutailifu, Sailidan
    Rouzi, Nueramina
    Dai, Guozhao
    Maimaiti, Patiman
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [14] An MRI radiomics-based model for the prediction of invasion of the lymphovascular space in patients with cervical cancer
    Ma, Nan-Nan
    Wang, Tao
    Lv, Ya-Nan
    Li, Shao-Dong
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [15] Prediction of lymphovascular invasion in invasive breast cancer based on clinical-MRI radiomics features
    Zhang, Chunling
    Zhou, Peng
    Li, Ruobing
    Li, Zhongyuan
    Ouyang, Aimei
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [16] Radiomics Analysis on Digital Breast Tomosynthesis: Preoperative Evaluation of Lymphovascular Invasion Status in Invasive Breast Cancer
    Wang, Dongqing
    Liu, Mengsi
    Zhuang, Zijian
    Wu, Shuting
    Zhou, Peng
    Chen, Xingchi
    Zhu, Haitao
    Liu, Huihui
    Zhang, Lirong
    ACADEMIC RADIOLOGY, 2022, 29 (12) : 1773 - 1782
  • [17] Development and Validation of an MRI Radiomics-Based Signature to Predict Histological Grade in Patients with Invasive Breast Cancer
    Wang, Shihui
    Wei, Yi
    Li, Zhouli
    Xu, Jingya
    Zhou, Yunfeng
    BREAST CANCER-TARGETS AND THERAPY, 2022, 14 : 335 - 342
  • [18] Prediction of Ki-67 of Invasive Ductal Breast Cancer Based on Ultrasound Radiomics Nomogram
    Zhu, Yunpei
    Dou, Yanping
    Qin, Ling
    Wang, Hui
    Wen, Zhihong
    JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (03) : 649 - 664
  • [19] Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma
    Junjie Zhang
    Guanghui Wang
    Jialiang Ren
    Zhao Yang
    Dandan Li
    Yanfen Cui
    Xiaotang Yang
    European Radiology, 2022, 32 : 4079 - 4089
  • [20] Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma
    Zhang, Junjie
    Wang, Guanghui
    Ren, Jialiang
    Yang, Zhao
    Li, Dandan
    Cui, Yanfen
    Yang, Xiaotang
    EUROPEAN RADIOLOGY, 2022, 32 (06) : 4079 - 4089