Quantified hydrodynamic limits for Schrodinger-type equations without the nonlinear potential

被引:0
|
作者
Kim, Jeongho [1 ]
Moon, Bora [2 ,3 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
[2] Hanyang Univ, Dept Math, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Hydrodynamic limit; Chern-Simons-Schrodinger equations; Schrodinger equation; Hartree equation; Modulated energy; SEMICLASSICAL LIMIT; WELL-POSEDNESS; RIGOROUS DERIVATION; VLASOV EQUATION; ENERGY; SYSTEM; MODEL; SCATTERING; SPACE;
D O I
10.1007/s00028-023-00903-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish rigorous and quantified hydrodynamic limits of the Schrodinger-type equations. Precisely, we consider the Schrodinger equation, Hartree equation, and Chern-Simons-Schrodinger equations and identify the hydrodynamic equations of them, when the Planck constant is negligible. In particular, we focus on the case when there is no Gross-Pitaevskii type self-interacting potential. In this situation, the method of modulated energy that has been used in previous literature to derive hydrodynamic limits of nonlinear Schrodinger-type equations is not valid anymore, since the system loses the desired estimate on the density difference. To overcome this difficulty, we combine the modulated energy with the bounded Lipschitz distance between densities to obtain the desired rigorous hydrodynamic limits of the Schrodinger-type equations without the potential.
引用
下载
收藏
页数:27
相关论文
共 50 条
  • [1] Quantified hydrodynamic limits for Schrödinger-type equations without the nonlinear potential
    Jeongho Kim
    Bora Moon
    Journal of Evolution Equations, 2023, 23
  • [2] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [3] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [4] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [5] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [6] Simulation of coherent structures in nonlinear Schrodinger-type equations
    Alonso-Mallo, I.
    Duran, A.
    Reguera, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (21) : 8180 - 8198
  • [7] Exact solutions to a class of nonlinear Schrodinger-type equations
    Zhang, Jin-Liang
    Wang, Ming-Liang
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1011 - 1022
  • [8] A review of dispersive limits of (non)linear Schrodinger-type equations
    Gasser, I
    Lin, CK
    Markowich, PA
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (04): : 501 - 529
  • [9] Complete integrability of derivative nonlinear Schrodinger-type equations
    Tsuchida, T
    Wadati, M
    INVERSE PROBLEMS, 1999, 15 (05) : 1363 - 1373
  • [10] Homogenization of Schrodinger-type equations
    Suslina, T. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (03) : 241 - 246