Exact solutions to a class of nonlinear Schrodinger-type equations

被引:13
|
作者
Zhang, Jin-Liang [1 ]
Wang, Ming-Liang
机构
[1] Henan Univ Sci & Technol, Coll Sci, Luoyang 471003, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2006年 / 67卷 / 06期
关键词
homogeneous balance principle; nonlinear Schrodinger equation; Rangwala-Rao equation; Gerdjikov-Ivanov equation; Chen-Lee-Lin equation; Ablowitz-Ramani-Segur equation; exact solution;
D O I
10.1007/s12043-006-0019-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of nonlinear Schrodinger-type equations, including the Rangwala-Rao equation, the Gerdjikov-Ivanov equation, the Chen-Lee-Lin equation and the Ablowitz-Ramani-Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of subsidiary higher order ordinary differential equations (sub-ODEs for short).
引用
下载
收藏
页码:1011 / 1022
页数:12
相关论文
共 50 条
  • [1] Solitons and other exact solutions for a class of nonlinear Schrodinger-type equations
    Zayed, E. M. E.
    Al-Nowehy, Abdul-Ghani
    OPTIK, 2017, 130 : 1295 - 1311
  • [2] Backlund transformations and exact soliton solutions for nonlinear Schrodinger-type equations
    Khater, AH
    Callebaut, DK
    El-Kalaawy, OH
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1998, 113 (09): : 1121 - 1130
  • [3] SMOOTHNESS AND APPROXIMATE PROPERTIES OF SOLUTIONS OF SCHRODINGER-TYPE ONE CLASS NONLINEAR EQUATIONS
    MURATBEKOV, MB
    OTELBAEV, M
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (03): : 44 - 47
  • [4] Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrodinger-type equations
    Zayed, E. M. E.
    Alurrfi, K. A. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 289 : 111 - 131
  • [5] New ansatze for obtaining exact solutions of nonlinear Schrodinger-type equation
    Bai Cheng-Lin
    Zhao Hong
    Zhang Li-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (02) : 249 - 252
  • [7] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [8] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [9] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [10] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)