Sum of powers of the Laplacian eigenvalues and the kirchhoff index of a graph

被引:0
|
作者
Hu, Mingying [1 ]
Chen, Haiyan [1 ]
Sun, Wenwen [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; Resistance distance; Kirchhoff index; First Zagreb index; Laplacian Estrada index; ENERGY-LIKE INVARIANT; RESISTANCE-DISTANCE; ESTRADA INDEX;
D O I
10.1016/j.amc.2023.127883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V = { 1 , 2 , . . . , n }. For any real number alpha, the topological index s(alpha)(G) of G is defined as s(alpha)(G) = Sigma(n-1) (i =1) mu(alpha) (i) , where mu(1) >= mu 2 >= . . . mu(n -1) >= mu(n) = 0 are the Laplacian eigenvalues of G . In this paper, we first express s alpha (G ) explicitly in terms of resistance distances Omega(ij), i, j is an element of V . Then we generalize the following well-known equality ns -1 (G ) = Kf(G) to any integer k >= -1 , where Kf(G) = Sigma(i<j) Omega(ij) is the Kirchhoff index of G . As by-products, we get the expressions for the first Zagreb index and the Laplacian Estrada index in terms of the resistance distances. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the sum of powers of distance Laplacian eigenvalues in terms of Wiener index and complement of a graph
    Mushtaq, Ummer
    Pirzada, S.
    Ul Haq, Mohammad Abrar
    Khan, Saleem
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [2] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [3] Bounding the sum of powers of normalized Laplacian eigenvalues of a graph
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    Altindag, S. Burcu Bozkurt
    Bozkurt, Durmus
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 324 : 82 - 92
  • [4] On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph
    Ashraf, Firouzeh
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1314 - 1320
  • [5] On sum of powers of the Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Xu, Kexiang
    Liu, Muhuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3561 - 3575
  • [6] On sum of powers of the Laplacian eigenvalues of graphs
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2239 - 2246
  • [7] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [8] On the sum of Laplacian eigenvalues of a signed graph
    Wang, Dijian
    Hou, Yaoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 39 - 52
  • [9] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169
  • [10] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546