A Study of Positivity Analysis for Difference Operators in the Liouville-Caputo Setting

被引:5
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ]
Mohammed, Pshtiwan Othman [5 ]
Guirao, Juan Luis G. [6 ,7 ]
Baleanu, Dumitru [8 ,9 ,10 ]
Al-Sarairah, Eman [11 ,12 ]
Jan, Rashid [13 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[6] Tech Univ Cartagena, Hosp Marina, Dept Appl Math & Stat, Cartagena 30203, Spain
[7] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[8] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[9] Inst Space Sci, R-76900 Magurele, Romania
[10] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon
[11] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[12] Al Hussein Bin Talal Univ, Dept Math, POB 33011, Maan 71111, Jordan
[13] Univ Swabi, Dept Math, Swabi 23561, Khyber Pakhtunk, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
Liouville-Caputo fractional operators; positivity analysis; monotonicity analysis; MONOTONICITY; CONVEXITY; CALCULUS;
D O I
10.3390/sym15020391
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of symmetric function interacts extensively with other types of functions. One of these is the class of positivity of functions, which is closely related to the theory of symmetry. Here, we propose a positive analysis technique to analyse a class of Liouville-Caputo difference equations of fractional-order with extremal conditions. Our monotonicity results use difference conditions ((LC)(a)delta(mu)f) (a + J(0) + 1 - mu) >= (1 - mu)f(a + J(0))and ((LC)(a)delta(mu)f) (a + J(0) + 1 -mu) <= (1 - mu)f (a + J(0)) to derive the corresponding relative minimum and maximum, respectively. We find alternative conditions corresponding to the main conditions in the main monotonicity results, which are simpler and stronger than the existing ones. Two numerical examples are solved by achieving the main conditions to verify the obtained monotonicity results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Positivity analysis for mixed order sequential fractional difference operators
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Abdeljawad, Thabet
    Sahoo, Soubhagya Kumar
    Abualnaja, Khadijah M.
    AIMS MATHEMATICS, 2022, 8 (02): : 2673 - 2685
  • [42] Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 381 - 390
  • [43] Bicomplex Caputo Derivative: A Comparative Study with Bicomplex Riemann-Liouville Operators and Applications
    Goswami, Mahesh Puri
    Kumar, Raj
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2024, 94 (03) : 345 - 358
  • [44] Post-Pandemic Sector-Based Investment Model Using Generalized Liouville-Caputo Type
    Awadalla, Muath
    Subramanian, Muthaiah
    Madheshwaran, Prakash
    Abuasbeh, Kinda
    SYMMETRY-BASEL, 2023, 15 (04):
  • [45] Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense
    Saad, Khaled M.
    Gomez-Aguilar, J. F.
    REVISTA MEXICANA DE FISICA, 2018, 64 (05) : 539 - 547
  • [46] A New Combination Method for Solving Nonlinear Liouville-Caputo and Caputo-Fabrizio Time-Fractional Reaction-Diffusion-Convection Equations
    Khalouta, A.
    Kadem, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 199 - 215
  • [47] Generalized Liouville-Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [48] The Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral
    Ahmad, Bashir
    Alghanmi, Madeaha
    Alsaedi, Ahmed
    Srivastava, Hari M.
    Ntouyas, Sotiris K.
    MATHEMATICS, 2019, 7 (06)
  • [49] Optimal control for obstacle problems involving time-dependent variational inequalities with Liouville-Caputo fractional derivative
    Sa Ngiamsunthorn, Parinya
    Suechoei, Apassara
    Kumam, Poom
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [50] Monotonicity and extremality analysis of difference operators in Riemann-Liouville family
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Abdeljawad, Thabet
    Al-Sarairah, Eman
    Hamed, Y. S.
    AIMS MATHEMATICS, 2023, 8 (03): : 5303 - 5317