A Study of Positivity Analysis for Difference Operators in the Liouville-Caputo Setting

被引:5
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ]
Mohammed, Pshtiwan Othman [5 ]
Guirao, Juan Luis G. [6 ,7 ]
Baleanu, Dumitru [8 ,9 ,10 ]
Al-Sarairah, Eman [11 ,12 ]
Jan, Rashid [13 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[6] Tech Univ Cartagena, Hosp Marina, Dept Appl Math & Stat, Cartagena 30203, Spain
[7] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[8] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[9] Inst Space Sci, R-76900 Magurele, Romania
[10] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon
[11] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[12] Al Hussein Bin Talal Univ, Dept Math, POB 33011, Maan 71111, Jordan
[13] Univ Swabi, Dept Math, Swabi 23561, Khyber Pakhtunk, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
Liouville-Caputo fractional operators; positivity analysis; monotonicity analysis; MONOTONICITY; CONVEXITY; CALCULUS;
D O I
10.3390/sym15020391
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of symmetric function interacts extensively with other types of functions. One of these is the class of positivity of functions, which is closely related to the theory of symmetry. Here, we propose a positive analysis technique to analyse a class of Liouville-Caputo difference equations of fractional-order with extremal conditions. Our monotonicity results use difference conditions ((LC)(a)delta(mu)f) (a + J(0) + 1 - mu) >= (1 - mu)f(a + J(0))and ((LC)(a)delta(mu)f) (a + J(0) + 1 -mu) <= (1 - mu)f (a + J(0)) to derive the corresponding relative minimum and maximum, respectively. We find alternative conditions corresponding to the main conditions in the main monotonicity results, which are simpler and stronger than the existing ones. Two numerical examples are solved by achieving the main conditions to verify the obtained monotonicity results.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Modeling the fractional non-linear Schrodinger equation via Liouville-Caputo fractional derivative
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    Baleanu, Dumitru
    OPTIK, 2018, 162 : 1 - 7
  • [32] Hyers-Ulam Stability and Existence of Solutions to the Generalized Liouville-Caputo Fractional Differential Equations
    Liu, Kui
    Feckan, Michal
    Wang, Jinrong
    SYMMETRY-BASEL, 2020, 12 (06):
  • [33] On the Generalized Liouville-Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions
    Awadalla, Muath
    Subramanian, Muthaiah
    Abuasbeh, Kinda
    Manigandan, Murugesan
    SYMMETRY-BASEL, 2022, 14 (11):
  • [34] ON THE SOLUTION OF BRATU'S INITIAL VALUE PROBLEM IN THE LIOUVILLE-CAPUTO SENSE BY ARA TRANSFORM AND DECOMPOSITION METHOD
    Cetinkaya, Suleyman
    Demir, Ali
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (12): : 1729 - 1738
  • [35] Fixed Point Theory and the Liouville-Caputo Integro-Differential FBVP with Multiple Nonlinear Terms
    Rezapour, Shahram
    Boulfoul, Ali
    Tellab, Brahim
    Samei, Mohammad Esmael
    Etemad, Sina
    George, Reny
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [36] NONLINEAR COUPLED LIOUVILLE-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH A NEW CLASS OF NONLOCAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Alsaedi, Ahmed
    Alotaibi, Fawziah M.
    Alghanmi, Madeaha
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 31 - 46
  • [37] On Some Inequalities Involving Liouville-Caputo Fractional Derivatives and Applications to Special Means of Real Numbers
    Samet, Bessem
    Aydi, Hassen
    MATHEMATICS, 2018, 6 (10)
  • [38] The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense
    Sawangtong, Panumart
    Trachoo, Kamonchat
    Sawangtong, Wannika
    Wiwattanapataphee, Benchawan
    MATHEMATICS, 2018, 6 (08):
  • [39] Existence Results for the System of Fractional-Order Sequential Integrodifferential Equations via Liouville-Caputo Sense
    Awadalla, Muath
    Murugesan, Manigandan
    Muthaiah, Subramanian
    Alahmadi, Jihan
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [40] Criteria for existence of solutions for a Liouville-Caputo boundary value problem via generalized Gronwall's inequality
    Mohammadi, Hakimeh
    Baleanu, Dumitru
    Etemad, Sina
    Rezapour, Shahram
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)