Multiscale anchor box and optimized classification with faster R-CNN for object detection

被引:4
|
作者
Wang, Sheng-Ye [1 ]
Qu, Zhong [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, 2 Chongwen Rd, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
image processing; image recognition; object detection; FEATURES;
D O I
10.1049/ipr2.12714
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the two-stage object detector as a faster region-convolutional neural network (Faster R-CNN), upgrading the accuracy of object recognition depends on the proposal box, which is generated by the region proposal algorithms. Due to the limitations of the anchor setting of Faster RCNN, the size of the proposal box generated by the region proposal network (RPN) used is large, which would easily cause a great number of overflows in the sliding search. To improve the accuracy of object detection and remit the overflow problem of the anchor box, multi-scale anchor box and moving overflow anchor box strategies are introduced here. Then, to increase the positive sample range of the foreground, the hierarchical weight cross entropy classification function is set for binary classification in the RPN network. These strategies could improve the accuracy of object detection. The experimental result achieves 76.2% AP on the Pascal VOC 2007(VOC 07) dataset, which is 2.7% higher than the Faster R-CNN. The result of the Pascal VOC 2012(VOC 12) test, we achieve 75.6% AP, is improved by 2.5% compared with the Faster R-CNN.
引用
收藏
页码:1322 / 1333
页数:12
相关论文
共 50 条
  • [41] Pedestrian Detection based on Faster R-CNN
    Liu S.
    Cui X.
    Li J.
    Yang H.
    Lukač N.
    International Journal of Performability Engineering, 2019, 15 (07) : 1792 - 1801
  • [42] R-CNN for Small Object Detection
    Chen, Chenyi
    Liu, Ming-Yu
    Tuzel, Oncel
    Xiao, Jianxiong
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 214 - 230
  • [43] ME R-CNN: Multi-Expert R-CNN for Object Detection
    Lee, Hyungtae
    Eum, Sungmin
    Kwon, Heesung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1030 - 1044
  • [44] MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images
    Avola, Danilo
    Cinque, Luigi
    Diko, Anxhelo
    Fagioli, Alessio
    Foresti, Gian Luca
    Mecca, Alessio
    Pannone, Daniele
    Piciarelli, Claudio
    REMOTE SENSING, 2021, 13 (09)
  • [45] Road Damage Detection and Classification with Detectron2 and Faster R-CNN
    Pham, Vung
    Pham, Chau
    Dang, Tommy
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5592 - 5601
  • [46] A Real Time Object Detection in Integral Part of Computer Vision using Novel Image Classification of Faster R-CNN Algorithm over Fast R-CNN Algorithm
    Srikar, M.
    Malathi, K.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 (04) : 1686 - 1693
  • [47] Optimized Detection Method for Snub-Nosed Monkeys Based on Faster R-CNN
    Sun Rui
    Zhang Xu
    Guo Ying
    Yu Xinwen
    Chen Yan
    Hou Ya'nan
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [48] AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN
    He, Zhige
    He, Yuanqing
    IEEE ACCESS, 2025, 13 : 36050 - 36064
  • [49] Combining Faster R-CNN and Model-Driven Clustering for Elongated Object Detection
    Fang, Fen
    Li, Liyuan
    Zhu, Hongyuan
    Lim, Joo-Hwee
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (01) : 2052 - 2065
  • [50] An accurate object detection of wood defects using an improved Faster R-CNN model
    Zou, Xianghe
    Wu, Chongyang
    Liu, Hongen
    Yu, Zhangwei
    Kuang, Xianyan
    WOOD MATERIAL SCIENCE & ENGINEERING, 2024,