AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN

被引:0
|
作者
He, Zhige [1 ]
He, Yuanqing [1 ]
机构
[1] Civil Aviat Flight Univ China, Sch Comp Sci, Guanghan 618307, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Feature extraction; Object detection; Airports; Atmospheric modeling; Accuracy; Proposals; Deep learning; Classification algorithms; Deformable models; Convolution; Airport scene; objection detection; faster-RCNN; CBAM; ResNet; DCN;
D O I
10.1109/ACCESS.2025.3539930
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degradation, lacking of detection capability for deformed and small objects and single feature extraction, causing low detection accuracy. To overcome these problems, we design an object detection method for airport scene named AS-Faster-RCNN. Firstly the ResNet-101 substitute for VGG-16 as the backbone network to improve the ability of detecting small objects, prevent the degradation and enhance the ability of detecting the small objects. Secondly, The DCN (Deformable Convolution Network) is employed in the backbone to strengthen the ability of extracting features for deformed objects. Finally, the CBAM (Convolutional Block Attention Module) is added to the backbone to extract multidimensional features to enhance performance of the model. We design some experiemnts to prove the feasibility of the method and the results demonstrate the mAP(mean Average Precision) has increased by 5.3% comapred to the basline model, and compared with other object detection models, its mAP also increased to a certain extent.
引用
收藏
页码:36050 / 36064
页数:15
相关论文
共 50 条
  • [1] Object Detection Algorithm Based on Improved Faster R-CNN
    Zhou Bing
    Li Runxin
    Shang Zhenhong
    Li Xiaowu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (10)
  • [2] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123
  • [3] An Improved Faster R-CNN for Small Object Detection
    Cao, Changqing
    Wang, Bo
    Zhang, Wenrui
    Zeng, Xiaodong
    Yan, Xu
    Feng, Zhejun
    Liu, Yutao
    Wu, Zengyan
    IEEE ACCESS, 2019, 7 : 106838 - 106846
  • [4] Cigarette Detection Algorithm Based on Improved Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    He, Yue
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2766 - 2770
  • [5] Image Object Detection Method Based on Improved Faster R-CNN
    Yin, Xiuye
    Chen, Liyong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [6] Improved Faster R-CNN algorithm for object parameter prediction
    Wang T.
    Cang Y.
    Bi X.
    He H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (03): : 426 - 432
  • [7] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [8] Study Of Object Detection Based On Faster R-CNN
    Liu, Bin
    Zhao, Wencang
    Sun, Qiaoqiao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6233 - 6236
  • [9] Pneumonia Detection Using an Improved Algorithm Based on Faster R-CNN
    Yao, Shangjie
    Chen, Yaowu
    Tian, Xiang
    Jiang, Rongxin
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [10] Improved Traffic Sign Detection Algorithm Based on Faster R-CNN
    Gao, Xiang
    Chen, Long
    Wang, Kuan
    Xiong, Xiaoxia
    Wang, Hai
    Li, Yicheng
    APPLIED SCIENCES-BASEL, 2022, 12 (18):