HIGHER-DIMENSIONAL SHRINKING TARGET PROBLEM FOR BETA DYNAMICAL SYSTEMS

被引:2
|
作者
Hussain, Mumtaz [1 ]
Wang, Weiliang [2 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, Australia
[2] West Anhui Univ, Dept Math, Liuan 237012, Anhui, Peoples R China
关键词
beta-expansions; shrinking target problem; Hausdorff dimension; QUANTITATIVE RECURRENCE PROPERTIES; DIOPHANTINE PROPERTIES; PRINCIPLE; SETS;
D O I
10.1017/S1446788722000076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general beta > 1) with general errors of approximation. Let f, g be two positive continuous functions. For any x(0), y(0) is an element of [0, 1], define the shrinking target set E(T-beta, f, g) := {(x, y) is an element of [0, 1](2): vertical bar T(beta)(n)x - x(0)vertical bar < e(-Snf(x)) vertical bar T(beta)(n)y - y(0)vertical bar < e(-Sng(y)) for infinitely many n is an element of N}, where S(n)f (x) = Sigma(n-1)(j=0) f(T(beta)(j)x) is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
引用
收藏
页码:289 / 311
页数:23
相关论文
共 50 条
  • [31] The strong CP problem and higher-dimensional gauge theories
    Adachi, Yuki
    Lim, C. S.
    Maru, Nobuhito
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (05):
  • [32] The scalar-curvature problem on higher-dimensional spheres
    Ben Ayed, M
    Chtioui, H
    Hammami, M
    DUKE MATHEMATICAL JOURNAL, 1998, 93 (02) : 379 - 424
  • [33] PRESCRIBING THE SCALAR CURVATURE PROBLEM ON HIGHER-DIMENSIONAL MANIFOLDS
    Ben Mahmoud, Randa
    Chtioui, Hichem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (05) : 1857 - 1879
  • [34] Parallel Subdomain Synthesis of Cell Mapping for Capturing Global Invariant Sets in Higher-Dimensional Dynamical Systems
    Li, Zigang
    Kang, Jiaqi
    Jiang, Jun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (15):
  • [35] On higher-dimensional dynamics
    Wesson, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [36] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [37] Graph state secret sharing in higher-dimensional systems
    Fortescue, Ben
    Keet, Adrian
    Markham, Damian
    Sanders, Barry C.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING VIII, 2010, 7815
  • [38] On sampling in higher-dimensional peer-to-peer systems
    Konjevod, G
    Picha, AW
    Xia, DL
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 641 - 652
  • [39] Existence and regularity for higher-dimensional H-systems
    Duzaar, F
    Grotowski, JF
    DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) : 459 - 485
  • [40] THEORIES OF SPECTRAL GAPS OF HIGHER-DIMENSIONAL DISORDERED SYSTEMS
    HORI, J
    WADA, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1970, (45): : 36 - &