HIGHER-DIMENSIONAL SHRINKING TARGET PROBLEM FOR BETA DYNAMICAL SYSTEMS

被引:2
|
作者
Hussain, Mumtaz [1 ]
Wang, Weiliang [2 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, Australia
[2] West Anhui Univ, Dept Math, Liuan 237012, Anhui, Peoples R China
关键词
beta-expansions; shrinking target problem; Hausdorff dimension; QUANTITATIVE RECURRENCE PROPERTIES; DIOPHANTINE PROPERTIES; PRINCIPLE; SETS;
D O I
10.1017/S1446788722000076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general beta > 1) with general errors of approximation. Let f, g be two positive continuous functions. For any x(0), y(0) is an element of [0, 1], define the shrinking target set E(T-beta, f, g) := {(x, y) is an element of [0, 1](2): vertical bar T(beta)(n)x - x(0)vertical bar < e(-Snf(x)) vertical bar T(beta)(n)y - y(0)vertical bar < e(-Sng(y)) for infinitely many n is an element of N}, where S(n)f (x) = Sigma(n-1)(j=0) f(T(beta)(j)x) is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
引用
收藏
页码:289 / 311
页数:23
相关论文
共 50 条
  • [21] Geometric chained inequalities for higher-dimensional systems
    Zukowski, Marek
    Dutta, Arijit
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [22] NONSTATISTICAL BEHAVIOR OF HIGHER-DIMENSIONAL COUPLED SYSTEMS
    SINHA, S
    BISWAS, D
    AZAM, M
    LAWANDE, SV
    PHYSICAL REVIEW A, 1992, 46 (06): : 3193 - 3197
  • [23] Periodic solutions of higher-dimensional discrete systems
    Zhou, Z
    Yu, JS
    Guo, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 1013 - 1022
  • [24] Entanglement concentration for higher-dimensional quantum systems
    Yao, CM
    Gu, YJ
    Ye, L
    Guo, GC
    CHINESE PHYSICS LETTERS, 2002, 19 (09) : 1242 - 1244
  • [25] The gauge hierarchy problem and higher-dimensional gauge theories
    Hatanaka, H
    Inami, T
    Lim, CS
    MODERN PHYSICS LETTERS A, 1998, 13 (32) : 2601 - 2611
  • [26] ON THE SPLITTING PROBLEM IN HIGHER-DIMENSIONAL FIELD-THEORIES
    MCINNES, B
    CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (02) : 329 - 342
  • [27] Higher-dimensional QCD without the strong CP problem
    Izawa, KI
    Watari, T
    Yanagida, T
    PHYSICS LETTERS B, 2002, 534 (1-4) : 93 - 96
  • [28] Chaotic oscillations in higher-dimensional systems - Introduction
    Kapitaniak, T
    CHAOS SOLITONS & FRACTALS, 2003, 15 (02) : 201 - 203
  • [29] Arithmetic of higher-dimensional orbifolds and a mixed Waring problem
    Tim Browning
    Shuntaro Yamagishi
    Mathematische Zeitschrift, 2021, 299 : 1071 - 1101
  • [30] Arithmetic of higher-dimensional orbifolds and a mixed Waring problem
    Browning, Tim
    Yamagishi, Shuntaro
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 1071 - 1101