HIGHER-DIMENSIONAL SHRINKING TARGET PROBLEM FOR BETA DYNAMICAL SYSTEMS

被引:2
|
作者
Hussain, Mumtaz [1 ]
Wang, Weiliang [2 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, Australia
[2] West Anhui Univ, Dept Math, Liuan 237012, Anhui, Peoples R China
关键词
beta-expansions; shrinking target problem; Hausdorff dimension; QUANTITATIVE RECURRENCE PROPERTIES; DIOPHANTINE PROPERTIES; PRINCIPLE; SETS;
D O I
10.1017/S1446788722000076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general beta > 1) with general errors of approximation. Let f, g be two positive continuous functions. For any x(0), y(0) is an element of [0, 1], define the shrinking target set E(T-beta, f, g) := {(x, y) is an element of [0, 1](2): vertical bar T(beta)(n)x - x(0)vertical bar < e(-Snf(x)) vertical bar T(beta)(n)y - y(0)vertical bar < e(-Sng(y)) for infinitely many n is an element of N}, where S(n)f (x) = Sigma(n-1)(j=0) f(T(beta)(j)x) is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
引用
收藏
页码:289 / 311
页数:23
相关论文
共 50 条
  • [1] TWO-DIMENSIONAL SHRINKING TARGET PROBLEM IN BETA-DYNAMICAL SYSTEMS
    Hussain, Mumtaz
    Wang, Weiliang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (01) : 33 - 42
  • [2] Modified shrinking target problem in beta dynamical systems
    Wang, Weiliang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (01) : 423 - 435
  • [3] Dichotomy Law for a Modified Shrinking Target Problem in Beta Dynamical System
    Wang, Wenya
    Guo, Zhongkai
    MATHEMATICS, 2024, 12 (23)
  • [4] The entropy formula of shrinking target problem in nonautonomous dynamical systems
    Tang, Yanjie
    Lin, Xiaojun
    Ma, Dongkui
    Ye, Xiaojiang
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (03): : 547 - 567
  • [5] A higher-dimensional Lehmer problem
    Amoroso, F
    David, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 513 : 145 - 179
  • [6] HIGHER-DIMENSIONAL PERIODIC SYSTEMS
    CHAMBERS, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (11) : 1664 - &
  • [7] Path-dependent shrinking target problems in beta-dynamical systems
    He, Yubin
    NONLINEARITY, 2023, 36 (12) : 6991 - 7006
  • [8] Shrinking target problems for beta-dynamical system
    SHEN LuMing
    WANG BaoWei
    ScienceChina(Mathematics), 2013, 56 (01) : 91 - 104
  • [9] Shrinking target problems for beta-dynamical system
    Shen LuMing
    Wang BaoWei
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (01) : 91 - 104
  • [10] Shrinking target problems for beta-dynamical system
    LuMing Shen
    BaoWei Wang
    Science China Mathematics, 2013, 56 : 91 - 104