Symmetrizable Boolean networks

被引:3
|
作者
Aledo, Juan A. [1 ]
Goles, Eric [2 ]
Montalva-Medel, Marco [2 ]
Montealegre, Pedro [2 ]
Valverde, Jose C. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Matemat, Albacete 02071, Spain
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Avda Diagonal Torres 2700 Penalolen, Santiago, Chile
关键词
Generalized parallel dynamical system; Period structure; Limit cycles; Symmetric and anti-symmetric networks; Symmetrizable networks; DISCRETE DYNAMICAL-SYSTEMS; CELLULAR-AUTOMATA; COMPUTATIONAL-COMPLEXITY;
D O I
10.1016/j.ins.2023.01.082
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we provide a procedure that allows us to transform certain kinds of deterministic Boolean networks on minterm or maxterm functions into symmetric ones, so inferring that such symmetrizable networks can present only periodic points of periods 1 or 2. In particular, we deal with generalized parallel (or synchronous) dynamical systems (GPDS) over undirected graphs, i. e., discrete parallel dynamical systems over undirected graphs where some of the self-loops may not appear. We also study the class of anti-symmetric GPDS (which are non-symmetrizable), proving that their periodic orbits have period 4. In addition, we introduce a class of non-symmetrizable systems which admit periodic orbits with arbitrary large periods.
引用
收藏
页码:787 / 804
页数:18
相关论文
共 50 条
  • [41] On Fixable Families of Boolean Networks
    Gadouleau, Maximilien
    Richard, Adrien
    CELLULAR AUTOMATA (ACRI 2018), 2018, 11115 : 396 - 405
  • [42] ON IDENTIFICATION OF BOOLEAN CONTROL NETWORKS
    Wang, Biao
    Feng, Jun-e
    Cheng, Daizhan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1591 - 1612
  • [43] Stability of Boolean multilevel networks
    Cozzo, Emanuele
    Arenas, Alex
    Moreno, Yamir
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [44] Computing preimages of Boolean networks
    Johannes Georg Klotz
    Martin Bossert
    Steffen Schober
    BMC Bioinformatics, 14
  • [45] Noise in random Boolean networks
    Peixoto, Tiago P.
    Drossel, Barbara
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [46] Minimal observability of Boolean networks
    Liu, Yang
    Zhong, Jie
    Ho, Daniel W. C.
    Gui, Weihua
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (05)
  • [47] Boolean networks with veto functions
    Ebadi, Haleh
    Klemm, Konstantin
    PHYSICAL REVIEW E, 2014, 90 (02)
  • [48] Feedback Shaping for Boolean Networks
    Qi, Hongsheng
    Valcher, Maria Elena
    Shi, Guodong
    IFAC PAPERSONLINE, 2023, 56 (02): : 6684 - 6689
  • [49] Evolution of canalizing Boolean networks
    A. Szejka
    B. Drossel
    The European Physical Journal B, 2007, 56 : 373 - 380
  • [50] Attractors in Boolean networks: a tutorial
    Hopfensitz, Martin
    Muessel, Christoph
    Maucher, Markus
    Kestler, Hans A.
    COMPUTATIONAL STATISTICS, 2013, 28 (01) : 19 - 36