Stability of Boolean multilevel networks

被引:62
|
作者
Cozzo, Emanuele [1 ]
Arenas, Alex [1 ,2 ]
Moreno, Yamir [1 ,3 ]
机构
[1] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza 50018, Spain
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Spain
[3] Univ Zaragoza, Dept Theoret Phys, E-50009 Zaragoza, Spain
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 03期
关键词
D O I
10.1103/PhysRevE.86.036115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Stability and stabilization of Boolean networks
    Cheng, Daizhan
    Qi, Hongsheng
    Li, Zhiqiang
    Liu, Jiang B.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (02) : 134 - 156
  • [2] Stability of linear Boolean networks
    Chandrasekhar, Karthik
    Kadelka, Claus
    Laubenbacher, Reinhard
    Murrugarra, David
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 451
  • [3] Stability of Asynchronous Boolean Networks
    Li, Zhiqiang
    Xiao, Huimin
    2014 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2014, : 496 - 500
  • [4] TIMING OPTIMIZATION OF MULTILEVEL NETWORKS USING BOOLEAN RELATIONS
    KUKIMOTO, Y
    FUJITA, M
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (03) : 362 - 369
  • [5] Interplay between degree and Boolean rules in the stability of Boolean networks
    Min, Byungjoon
    CHAOS, 2020, 30 (09)
  • [6] FRUSTRATION AND STABILITY IN RANDOM BOOLEAN NETWORKS
    FOGELMANSOULIE, F
    DISCRETE APPLIED MATHEMATICS, 1984, 9 (02) : 139 - 156
  • [7] Dynamical stability in random Boolean networks
    Campioli, Davide
    Villani, Marco
    Poli, Irene
    Serra, Roberto
    NEURAL NETS WIRN11, 2011, 234 : 120 - +
  • [8] Partial stability and stabilisation of Boolean networks
    Chen, Hong-Wei
    Sun, Liang-Jie
    Liu, Yang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (09) : 2119 - 2127
  • [9] Attractor stability in nonuniform Boolean networks
    Kuhlman, Chris J.
    Mortveit, Henning S.
    THEORETICAL COMPUTER SCIENCE, 2014, 559 : 20 - 33
  • [10] Stability structures of conjunctive Boolean networks
    Gao, Zuguang
    Chen, Xudong
    Basar, Tamer
    AUTOMATICA, 2018, 89 : 8 - 20