Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries

被引:6
|
作者
Qin, Liping [1 ,2 ]
Zhu, Qi [1 ]
Li, Lijun [1 ]
Cheng, Hao [1 ]
Li, Wentao [1 ]
Fang, Zhijie [3 ]
Mo, Man [3 ]
Chen, Shunfeng [4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Biol & Chem Engn, Guangxi Key Lab Green Proc Sugar Resources, Liuzhou 545006, Guangxi, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
[4] Guangxi Univ Sci & Technol, Acad Affairs Off, Liuzhou 545006, Guangxi, Peoples R China
关键词
Ni2+-doped ZnMn2O4; Aqueous zinc-ion batteries; Cathode materials; Energy conversion and storage; FABRICATION; MECHANISM; STORAGE; XPS;
D O I
10.1007/s10008-022-05370-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese-based materials are considered as potential cathode materials for aqueous zinc-ion batteries due to the advantages of high voltage platform, non-toxic, and environmental protection. However, the rapid decline capacity due to the dissolution of manganese and the low conductivity restrict its further development. In this paper, Ni2+-doped ZnMn2O4 nanoparticles were prepared and used as cathode materials for aqueous zinc-ion batteries. The Ni2+-doping effectively improves its electrochemical performance. The Ni2+-doped ZnMn2O4 cathode shows a discharge-specific capacity of 175 mAh g(-1) after an activation process at current density of 100 mA g(-1). At a high current density of 1A g(-1), the cathode displays a specific capacity of 120 mAh g(-1), and the Coulombic efficiency of above 97% can be maintained throughout the cycles except for the first cycle, indicating a high reversibility of charging/discharging. The Ni2+-doping increases the conductivity and zinc-ion diffusion coefficient of the material electrode through destroying the periodic potential field generated by the material. It shows that the synergistic effect of manganese and transition metal ions provides a possible direction for the future development of cathode materials for aqueous zinc-ion batteries.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
  • [31] A V2O3@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Ren, Huai-Zheng
    Zhang, Jian
    Wang, Bo
    Luo, Hao
    Jin, Fan
    Zhang, Tian-Ren
    Ding, An
    Cong, Bo-Wen
    Wang, Dian-Long
    RARE METALS, 2022, 41 (05) : 1605 - 1615
  • [32] A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Huai-Zheng Ren
    Jian Zhang
    Bo Wang
    Hao Luo
    Fan Jin
    Tian-Ren Zhang
    An Ding
    Bo-Wen Cong
    Dian-Long Wang
    Rare Metals, 2022, 41 : 1605 - 1615
  • [33] Electrochemical behavior of prelithiated ZnMn2O4 anode for Lithium ion batteries
    Park, Yoon-Soo
    Lee, Sung-Man
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (03): : 426 - 429
  • [34] 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries
    Shi, Minjie
    Wang, Bei
    Shen, Yi
    Jiang, Jintian
    Zhu, Wenhuan
    Su, Yanjie
    Narayanasamy, Mugilan
    Angaiah, Subramania
    Yan, Chao
    Peng, Qiang
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [35] Microstructure Strain of ZnMn2O4 Spinel by Regulation of Tetrahedral Sites for High-Performance Aqueous Zinc-Ion Battery
    Wang, Chuan
    Xiao, Bo-Hao
    Huang, Jiale
    Xiao, Kang
    Liu, Zhao-Qing
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [36] A Novel Ni-doped ZnMn2O4/Mn2O3 nanocomposite synthesized by pulsed potential as superior zinc ion battery cathode material
    Saadi-motaallegh, Shabnam
    Javanbakht, Mehran
    Omidvar, Hamid
    Habibzadeh, Sajjad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 963
  • [37] Zn-ion batteries: ZnMn 2 O 4 as cathode material
    Sharma, Mamta
    Sharma, Rahul
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 3378 - 3385
  • [38] Cobalt-doped manganese(III) oxide cathode materials with enhanced electrochemical performance for aqueous zinc-ion batteries
    Zhou, Zixiang
    Tong, Jianbo
    Guo, Jiale
    Guo, Shaofeng
    Liu, Shuhan
    Qin, Zhipeng
    Luo, Muxuan
    Wang, Chao
    Liu, Shuling
    GREEN CHEMISTRY, 2024, 26 (11) : 6704 - 6712
  • [39] Research on the electrochemical performance of polyoxovanadate material K4Na2V10O28 as a novel aqueous zinc-ion batteries cathode
    Zhou, Tao
    Xiao, Haoran
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Xiao, Yongmei
    Yang, Xinli
    Zhu, Limin
    Cao, Xiaoyu
    ELECTROCHIMICA ACTA, 2022, 424
  • [40] Cerium-doped Mn2O3 microspheres: a high-performance cathode material for aqueous zinc-ion batteries
    Li, Xin
    Wang, Wenyu
    Li, Linwen
    Xue, Chengyu
    Chen, Yang
    Zhu, Tiantian
    Wei, Fuxiang
    Sui, Yanwei
    He, Jie
    Zhang, Zunyang
    New Journal of Chemistry, 2025, 49 (07) : 2722 - 2729