Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration

被引:22
|
作者
Ainsworth, Madison J. [1 ,2 ]
Lotz, Oliver [3 ,4 ,5 ]
Gilmour, Aaron [3 ,5 ,6 ]
Zhang, Anyu [3 ]
Chen, Michael J. [7 ]
McKenzie, David R. [5 ]
Bilek, Marcela M. M. [3 ,4 ,5 ,6 ,8 ]
Malda, Jos [1 ,2 ,9 ]
Akhavan, Behnam [3 ,5 ,8 ,10 ,11 ]
Castilho, Miguel [1 ,2 ,12 ,13 ]
机构
[1] Univ Med Ctr Utrecht, Regenerat Med Ctr Utrecht, NL-3584 Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 Utrecht, Netherlands
[3] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[6] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[7] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[8] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3584 Utrecht, Netherlands
[10] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[11] Hunter Med Res Inst HMRI, New Lambton Hts, NSW 2305, Australia
[12] Tech Univ Eindhoven, Dept Biomed Engn, Eindhoven, Netherlands
[13] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
基金
澳大利亚研究理事会;
关键词
atmospheric-pressure plasma; cartilage; melt electrowriting; protein immobilization; stem cell differentiation; technology convergence; transforming growth factor beta; TGF-BETA; SCAFFOLDS; DIFFERENTIATION; HYDROGEL; GELATIN; REPAIR; BONE; BIO;
D O I
10.1002/adfm.202206583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGF beta 1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGF beta 1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less C-C/C-H and more COOH than the untreated meshes. APPJ treatment increases TGF beta 1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGF beta 1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGF beta 1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGF beta 1 is supplied through the medium. These results demonstrate that APPJ activation allows reagent-free, covalent immobilization of TGF beta 1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] 3D-printed porous calcium silicate scaffolds with hydroxyapatite/graphene oxide hybrid coating for guided bone regeneration
    Liu, Kang
    Jin, Xin
    Wang, Min
    Bai, Yufei
    Jiang, Hongjiang
    Zhu, Qiang
    Zhang, Peng
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 1103 - 1114
  • [42] In vivo efficacy of 3D-printed elastin-gelatin-hyaluronic acid scaffolds for regeneration of nasal septal cartilage defects
    Shokri, Abbas
    Ramezani, Kousar
    Jamalpour, Mohammad Reza
    Mohammadi, Chiman
    Vahdatinia, Farshid
    Irani, Amin Doosti
    Sharifi, Esmaeel
    Haddadi, Rasool
    Jamshidi, Shokoofeh
    Amirabad, Leila Mohammadi
    Tajik, Sanaz
    Yadegari, Amir
    Tayebi, Lobat
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (03) : 614 - 624
  • [43] 3D-printed minimalists
    Gross, Heinz
    Gross, Sebastian
    Nobrega, Miguel J.
    Vidal, Joao P.O.
    Kunststoffe International, 2019, 109 (1-2): : 40 - 43
  • [44] A 3D-Printed Computer
    Shirmohammadli, Vahideh
    Bahreyni, Behraad
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (08)
  • [45] 3D-Printed Microfluidics
    Au, Anthony K.
    Huynh, Wilson
    Horowitz, Lisa F.
    Folch, Albert
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 3862 - 3881
  • [46] 3D-printed microboat
    不详
    NATURE, 2020, 587 (7835) : 527 - 527
  • [47] 3D-PRINTED THERMOPLASTICS
    不详
    ADVANCED MATERIALS & PROCESSES, 2021, 179 (04): : 9 - 9
  • [48] 3D-printed ceramics
    Button, Keith (buttonkeith@gmail.com), 1600, AIAA International (58):
  • [49] NERVE REGENERATION WITH A BIO 3D-PRINTED CONDUIT FOR PERIPHERAL NERVE INJURY
    Ikeguchi, R.
    Aoyama, T.
    Noguchi, T.
    Sakamoto, D.
    Iwai, T.
    Fujita, K.
    Miyamoto, T.
    Miyazaki, Y.
    Akieda, S.
    Nakayama, K.
    Matsuda, S.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2025, 30
  • [50] 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration
    Li, Guanlin
    Li, Zehao
    Min, Yajun
    Chen, Shilu
    Han, Ruijia
    Zhao, Zheng
    SMALL, 2023, 19 (40)