Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration

被引:22
|
作者
Ainsworth, Madison J. [1 ,2 ]
Lotz, Oliver [3 ,4 ,5 ]
Gilmour, Aaron [3 ,5 ,6 ]
Zhang, Anyu [3 ]
Chen, Michael J. [7 ]
McKenzie, David R. [5 ]
Bilek, Marcela M. M. [3 ,4 ,5 ,6 ,8 ]
Malda, Jos [1 ,2 ,9 ]
Akhavan, Behnam [3 ,5 ,8 ,10 ,11 ]
Castilho, Miguel [1 ,2 ,12 ,13 ]
机构
[1] Univ Med Ctr Utrecht, Regenerat Med Ctr Utrecht, NL-3584 Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 Utrecht, Netherlands
[3] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[6] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[7] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[8] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3584 Utrecht, Netherlands
[10] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[11] Hunter Med Res Inst HMRI, New Lambton Hts, NSW 2305, Australia
[12] Tech Univ Eindhoven, Dept Biomed Engn, Eindhoven, Netherlands
[13] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
基金
澳大利亚研究理事会;
关键词
atmospheric-pressure plasma; cartilage; melt electrowriting; protein immobilization; stem cell differentiation; technology convergence; transforming growth factor beta; TGF-BETA; SCAFFOLDS; DIFFERENTIATION; HYDROGEL; GELATIN; REPAIR; BONE; BIO;
D O I
10.1002/adfm.202206583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGF beta 1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGF beta 1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less C-C/C-H and more COOH than the untreated meshes. APPJ treatment increases TGF beta 1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGF beta 1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGF beta 1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGF beta 1 is supplied through the medium. These results demonstrate that APPJ activation allows reagent-free, covalent immobilization of TGF beta 1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V. P.
    Nair, Prabha D.
    BIOMEDICAL MATERIALS, 2021, 16 (05)
  • [32] Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration
    Karanth, Divakar
    Song, Kaidong
    Macey, L. Martin
    Meyer, Delaney R.
    Dolce, Calogero
    Huang, Yong
    Holliday, L. Shannon
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2023, 26 : 188 - 195
  • [33] Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration
    Huang, Yibing
    Zhang, Zhijun
    Bi, Fei
    Tang, Huilin
    Chen, Jiahao
    Huo, Fangjun
    Chen, Jie
    Lan, Tingting
    Qiao, Xiangchen
    Sima, Xiutian
    Guo, Weihua
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (28)
  • [34] The development of a bioengineered composite 3D-printed scaffold for tracheal regeneration
    Khalid, Tehreem
    Lemoine, Mark
    Cryan, Sally-Ann
    O'Brien, Fergal
    O'Leary, Cian
    EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [35] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552
  • [36] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Raúl Rosales-Ibáñez
    Alejandro Emmanuel Viera-Ruiz
    Juan Valerio Cauich-Rodríguez
    Hugo Joel Carrillo-Escalante
    Arely González-González
    Jesús Jiovanni Rodríguez-Martínez
    Fernando Hernández-Sánchez
    Polymer Bulletin, 2023, 80 : 2533 - 2552
  • [37] Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration
    Huang, Yibing
    Zhang, Zhijun
    Bi, Fei
    Tang, Huilin
    Chen, Jiahao
    Huo, Fangjun
    Chen, Jie
    Lan, Tingting
    Qiao, Xiangchen
    Sima, Xiutian
    Guo, Weihua
    ADVANCED HEALTHCARE MATERIALS, 2023,
  • [38] Investigating Dynamic Changes in 3D-Printed Covalent Adaptable Polymer Networks
    Jia, Yixuan
    Spiegel, Christoph A.
    Diehm, Juliane
    Zimmermann, Daniel
    Huber, Birgit
    Mutlu, Hatice
    Franzreb, Matthias
    Wilhelm, Manfred
    Theato, Patrick
    Blasco, Eva
    Tsotsalas, Manuel
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2024, 309 (09)
  • [39] Effect of Icariin on Engineered 3D-Printed Porous Scaffolds for Cartilage Repair
    Kankala, Ranjith Kumar
    Lu, Feng-Jun
    Liu, Chen-Guang
    Zhang, Shan-Shan
    Chen, Ai-Zheng
    Wang, Shi-Bin
    MATERIALS, 2018, 11 (08)
  • [40] Accuracy Assessment of a Novel Radiographic Method to Evaluate Guided Bone Regeneration Outcomes Using a 3D-Printed Model
    Shi J.
    Li Y.
    Zhang X.
    Zhang X.
    Lai H.
    Journal of Shanghai Jiaotong University (Science), 2021, 26 (03) : 284 - 289