Crop type classification with hyperspectral images using deep learning : a transfer learning approach

被引:13
|
作者
Patel, Usha [1 ,2 ]
Pathan, Mohib [1 ]
Kathiria, Preeti [1 ]
Patel, Vibha [3 ]
机构
[1] Nirma Univ, Inst Technol, CSE Dept, Ahmadabad, Gujarat, India
[2] Gujarat Technol Univ, Ahmadabad, Gujarat, India
[3] Gujarat Technol Univ, Vishwakarma Govt Engn Coll, IT Dept, Ahmadabad, Gujarat, India
关键词
Hyperspectral images (HSIs); Transfer learning (TL); Homogeneous transfer learning; Heterogeneous transfer learning; Pre-trained models; Deep neural network; RESNET;
D O I
10.1007/s40808-022-01608-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop classification plays a vital role in felicitating agriculture statistics to the state and national government in decision-making. In recent years, due to advancements in remote sensing, high-resolution hyperspectral images (HSIs) are available for land cover classification. HSIs can classify the different crop categories precisely due to their narrow and continuous spectral band reflection. With improvements in computing power and evolution in deep learning technology, Deep learning is rapidly being used for HSIs classification. However, to train deep neural networks, many labeled samples are needed. The labeling of HSIs is time-consuming and costly. A transfer learning approach is used in many applications where a labeled dataset is challenging. This paper opts for the heterogeneous transfer learning models on benchmark HSIs datasets to discuss the performance accuracy of well-defined deep learning models-VGG16, VGG19, ResNet, and DenseNet for crop classification. Also, it discusses the performance accuracy of customized 2-dimensional Convolutional neural network (2DCNN) and 3-dimensional Convolutional neural network (3DCNN) deep learning models using homogeneous transfer learning models on benchmark HSIs datasets for crop classification. The results show that although HSIs datasets contain few samples, the transfer learning models perform better with limited labeled samples. The results achieved 99% of accuracy for the Indian Pines and Pavia University dataset with 15% of labeled training samples with heterogeneous transfer learning. As per the overall accuracy, homogeneous transfer learning with 2DCNN and 3DCNN models pre-trained on the Indian Pines dataset and adjusted on the Salinas scene dataset performs far better than heterogeneous transfer learning.
引用
收藏
页码:1977 / 1987
页数:11
相关论文
共 50 条
  • [41] Fusion-Based Deep Learning Model for Hyperspectral Images Classification
    Kriti
    Haq, Mohd Anul
    Garg, Urvashi
    Khan, Mohd Abdul Rahim
    Rajinikanth, V
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 939 - 957
  • [42] A comprehensive systematic review of deep learning methods for hyperspectral images classification
    Ranjan, Pallavi
    Girdhar, Ashish
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (17) : 6221 - 6306
  • [43] Classification of brain tumors from MR images using deep transfer learning
    Polat, Ozlem
    Gungen, Cahfer
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 7236 - 7252
  • [44] Crop type mapping by using transfer learning
    Nowakowski, Artur
    Mrziglod, John
    Spiller, Dario
    Bonifacio, Rogerio
    Ferrari, Irene
    Mathieu, Pierre Philippe
    Garcia-Herranz, Manuel
    Kim, Do-Hyung
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 98
  • [45] Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    Khasawneh, Natheer
    PLANTS-BASEL, 2022, 11 (20):
  • [46] Modality Classification and Concept Detection in Medical Images using Deep Transfer Learning
    Singh, Sonit
    Ho-Shon, Kevin
    Karimi, Sarvnaz
    Hamey, Len
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
  • [47] Classification of brain tumors from MR images using deep transfer learning
    Özlem Polat
    Cahfer Güngen
    The Journal of Supercomputing, 2021, 77 : 7236 - 7252
  • [48] Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images
    Bhosle, Kavita
    Musande, Vijaya
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (11) : 1949 - 1958
  • [49] Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images
    Kavita Bhosle
    Vijaya Musande
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 1949 - 1958
  • [50] Machine Learning and Deep Learning Techniques for Spectral Spatial Classification of Hyperspectral Images: A Comprehensive Survey
    Grewal, Reaya
    Kasana, Singara Singh
    Kasana, Geeta
    ELECTRONICS, 2023, 12 (03)