Crop type classification with hyperspectral images using deep learning : a transfer learning approach

被引:13
|
作者
Patel, Usha [1 ,2 ]
Pathan, Mohib [1 ]
Kathiria, Preeti [1 ]
Patel, Vibha [3 ]
机构
[1] Nirma Univ, Inst Technol, CSE Dept, Ahmadabad, Gujarat, India
[2] Gujarat Technol Univ, Ahmadabad, Gujarat, India
[3] Gujarat Technol Univ, Vishwakarma Govt Engn Coll, IT Dept, Ahmadabad, Gujarat, India
关键词
Hyperspectral images (HSIs); Transfer learning (TL); Homogeneous transfer learning; Heterogeneous transfer learning; Pre-trained models; Deep neural network; RESNET;
D O I
10.1007/s40808-022-01608-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop classification plays a vital role in felicitating agriculture statistics to the state and national government in decision-making. In recent years, due to advancements in remote sensing, high-resolution hyperspectral images (HSIs) are available for land cover classification. HSIs can classify the different crop categories precisely due to their narrow and continuous spectral band reflection. With improvements in computing power and evolution in deep learning technology, Deep learning is rapidly being used for HSIs classification. However, to train deep neural networks, many labeled samples are needed. The labeling of HSIs is time-consuming and costly. A transfer learning approach is used in many applications where a labeled dataset is challenging. This paper opts for the heterogeneous transfer learning models on benchmark HSIs datasets to discuss the performance accuracy of well-defined deep learning models-VGG16, VGG19, ResNet, and DenseNet for crop classification. Also, it discusses the performance accuracy of customized 2-dimensional Convolutional neural network (2DCNN) and 3-dimensional Convolutional neural network (3DCNN) deep learning models using homogeneous transfer learning models on benchmark HSIs datasets for crop classification. The results show that although HSIs datasets contain few samples, the transfer learning models perform better with limited labeled samples. The results achieved 99% of accuracy for the Indian Pines and Pavia University dataset with 15% of labeled training samples with heterogeneous transfer learning. As per the overall accuracy, homogeneous transfer learning with 2DCNN and 3DCNN models pre-trained on the Indian Pines dataset and adjusted on the Salinas scene dataset performs far better than heterogeneous transfer learning.
引用
收藏
页码:1977 / 1987
页数:11
相关论文
共 50 条
  • [11] Deep transfer learning for Hyperspectral Image classification
    Lin, Jianzhe
    Ward, Rabab
    Wang, Z. Jane
    2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [12] Terrain Classification using Transfer Learning on Hyperspectral Images: A Comparative study
    Singh, Uphar
    Saurabh, Kumar
    Trehan, Neelaksh
    Vyas, Ranjana
    Vyas, O. P.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [13] Plastic Classification With NIR Hyperspectral Images and Deep Learning
    Sbrana, Attilio
    de Almeida, Aline Gabriel
    de Oliveira, Andre Mobaier
    Neto, Henrique Seschin
    Rimes, Joao Paulo Cesar
    Belli, Maria Cristina
    IEEE SENSORS LETTERS, 2023, 7 (01)
  • [14] Hyperspectral Imagery Classification Using Deep Learning
    Bidari, Indira
    Chickerur, Satyadhyan
    Ranmale, Harivijay
    Talawar, Sushmita
    Ramadurg, Harish
    Talikoti, Rekha
    PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 672 - 676
  • [15] Cloud type classification using deep learning with cloud images
    Guzel, Mehmet
    Kalkan, Muruvvet
    Bostanci, Erkan
    Acici, Koray
    Asuroglu, Tunc
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [16] A Deep Learning Approach for the Detection of Neovascularization in Fundus Images Using Transfer Learning
    Tang, Michael Chi Seng
    Teoh, Soo Siang
    Ibrahim, Haidi
    Embong, Zunaina
    IEEE ACCESS, 2022, 10 : 20247 - 20258
  • [17] Remote Sensing Based Crop Type Classification Via Deep Transfer Learning
    Gadiraju, Krishna Karthik
    Vatsavai, Ranga Raju
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4699 - 4712
  • [18] Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images
    Anami, Basavaraj S.
    Malvade, Naveen N.
    Palaiah, Surendra
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2020, 4 : 12 - 20
  • [19] Deep learning ensemble method for classification of satellite hyperspectral images
    Iyer, Praveen
    Sriram, A.
    Lal, Shyam
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
  • [20] Wheat crop classification using deep learning
    Gill, Harmandeep Singh
    Bath, Bikramjit Singh
    Singh, Rajanbir
    Riar, Amarinder Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82641 - 82657