Fluid-Solid Coupling in Kinetic Two-Phase Flow Simulation

被引:4
|
作者
Li, Wei [1 ]
Desbrun, Mathieu [2 ]
机构
[1] Tencent Lightspeed Studios, 139 Longai Rd, Shanghai, Peoples R China
[2] Inria Saclay, 1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 04期
关键词
Multiphase flow; turbulent flow simulation; lattice Boltzmann method; LATTICE BOLTZMANN METHOD; MULTIPHASE FLOW; ANIMATION; SOLVER;
D O I
10.1145/3592138
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Real-life flows exhibit complex and visually appealing behaviors such as bubbling, splashing, glugging and wetting that simulation techniques in graphics have attempted to capture for years. While early approaches were not capable of reproducing multiphase flow phenomena due to their excessive numerical viscosity and low accuracy, kinetic solvers based on the lattice Boltzmann method have recently demonstrated the ability to simulate water-air interaction at high Reynolds numbers in a massively-parallel fashion. However, robust and accurate handling of fluid-solid coupling has remained elusive: be it for CG or CFD solvers, as soon as the motion of immersed objects is too fast or too sudden, pressures near boundaries and interfacial forces exhibit spurious oscillations leading to blowups. Built upon a phase-field and velocity-distribution based lattice-Boltzmann solver for multiphase flows, this paper spells out a series of numerical improvements in momentum exchange, interfacial forces, and two-way coupling to drastically reduce these typical artifacts, thus significantly expanding the types of fluid-solid coupling that we can efficiently simulate. We highlight the numerical benefits of our solver through various challenging simulation results, including comparisons to previous work and real footage.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Numerical simulation on solid particle erosion of solid-liquid two-phase fluid in flow controller
    Li, Guomei
    Wang, Yueshe
    Sun, Hu
    Kang, Liqiang
    Wang, Yanling
    He, Renyang
    Shiyou Xuebao/Acta Petrolei Sinica, 2009, 30 (01): : 145 - 148
  • [22] Numerical Simulation of Fluid-Solid Coupling for Solar Photovoltaic Module in Periodic Flow Field
    Dai B.
    Kan A.
    Applied Solar Energy (English translation of Geliotekhnika), 2023, 59 (04): : 468 - 479
  • [23] Investigation on effect of drag models on flow behavior of power-law fluid-solid two-phase flow in fluidized bed
    Yuan, Zihan
    Wang, Shuyan
    Shao, Baoli
    Xie, Lei
    Chen, Yujia
    Ma, Yimei
    PARTICUOLOGY, 2022, 70 : 43 - 54
  • [24] A Lagrangian vortex method for smoke simulation with two-way fluid-solid coupling
    Tao, Rui
    Ren, Hongxiang
    Liu, Jun
    Xiao, Fangbing
    COMPUTERS & GRAPHICS-UK, 2022, 107 : 289 - 302
  • [25] Numerical Simulation on Gas-liquid Two-phase Flow in Fluid Coupling during Braking
    Song, Bin
    Lv, Jiangang
    Zhao, Guangjun
    Kong, Fan
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 5, 2010, : 709 - 713
  • [26] CFD SIMULATION OF SOLID AND NON-NEWTONIAN FLUID TWO-PHASE FLOW IN ANAEROBIC DIGESTERS
    Wu, Binxin
    Deng, Xin
    Li, Weixiang
    Kariyama, Ibrahim Denka
    Chen, Long
    Yu, Shaoqi
    Qi, Rui
    Zhang, Hao
    Li, Xiaxia
    Lin, Jian
    JOURNAL OF THE ASABE, 2022, 65 (04): : 903 - 912
  • [27] Simulation of Parachute Ripcord Process Based on Fluid-Solid Coupling
    Li Naitian
    Tong Zongkai
    Gao Yong
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION (IFEEA 2015), 2016, 54 : 340 - 343
  • [28] The Volume of Fluid Method, a Method for the Simulation of Two-Phase Flow
    Ghaib, Karim
    CHEMIE INGENIEUR TECHNIK, 2018, 90 (03) : 316 - 323
  • [29] Realistic Simulation of Multi-scale Fluid-solid Coupling
    Zhong, Zichun
    Chen, Leiting
    Cai, Hongbin
    Cao, Yue
    9TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1 AND 2: MULTICULTURAL CREATION AND DESIGN - CAID& CD 2008, 2008, : 523 - 528
  • [30] Simulation of two-phase fluid flow through compactible reservoirs
    Grechka, V
    Soutter, L
    GEOPHYSICAL PROSPECTING, 2005, 53 (06) : 829 - 841