Numerical Simulation of Fluid-Solid Coupling for Solar Photovoltaic Module in Periodic Flow Field

被引:0
|
作者
Dai B. [1 ]
Kan A. [1 ]
机构
[1] Merchant Marine College, Shanghai Maritime University, Shanghai
基金
中国国家自然科学基金;
关键词
Computational Fluid Dynamics (CFD); fluid-solid coupling; Reynolds-averaged Navier–Stokes (RANS); risk of failure; solar panel; wind load;
D O I
10.3103/S0003701X23600571
中图分类号
学科分类号
摘要
Abstract: Three-dimensional simulations using Reynolds-averaged Navier–Stokes equations were conducted to evaluate wind loads and structural displacements of ground-mounted solar panels under different flow conditions. The panels were arranged in a regular array consisting of 3 rows and 5 columns, with each row comprising 4 × 4 sub-panels inclined at 45°. To conserve computational resources, periodic flow conditions were applied to a single panel by specifying the pressure differential and inlet velocity ranging from 25 to 50 m/s. The fluid-solid coupling, fixed geometry multi-physics field coupling feature was employed to couple the boundary loads due to fluid flow from the fluid to the solid domain. Our results reveal the existence of circulation zones between the panels in the array. The pressure at the upper corners of the solar panel increases sharply with velocity, leading to a larger structural displacement in this region. As the wind speed increases, the safety factors obtained from the simulation for the solar panel support module and the glass panel are 22.8, 8.9, and 5.7 m/s, respectively. And the safety factor of the support frame and support rod junction and the upper row of glass panels decreases significantly. Therefore, the failure characteristics of this part of the structure should be considered in case of a sudden change in wind speed. © 2023, Allerton Press, Inc.
引用
收藏
页码:468 / 479
页数:11
相关论文
共 50 条
  • [1] Numerical Simulation of Fluid-solid Coupling on Offshore Platform and Wave Field
    Zhu, Xiaoling
    Zhang, Hua
    Ou, Haiqing
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS III AND IV, 2013,
  • [2] Numerical Simulation of Fluid-Solid Coupling Seepage of Groundwater
    Xing Li-ming
    Liang Bing
    Li Gang
    FLOW IN POROUS MEDIA - FROM PHENOMENA TO ENGINEERING AND BEYOND, 2009, : 315 - +
  • [3] Numerical analysis of fluid-solid coupling
    Li, Zhiyuan
    Liang, Renwang
    Energy Education Science and Technology Part A: Energy Science and Research, 2014, 32 (03): : 1789 - 1798
  • [4] Fast and Versatile Fluid-Solid Coupling for Turbulent Flow Simulation
    Lyu, Chaoyang
    Li, Wei
    Desbrun, Mathieu
    Liu, Xiaopei
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):
  • [5] Numerical Simulation of Fluid-solid Coupling for Two-phase Flow and Rock Mass Deformation
    Liang Bing
    Zhang Chunmei
    2010 INTERNATIONAL SYMPOSIUM ON MULTI-FIELD COUPLING THEORY OF ROCK AND SOIL MEDIA AND ITS APPLICATIONS, 2010, : 701 - 705
  • [6] Numerical simulation of fluid-solid coupling of abnormally pressured gas reservoirs
    Zheng, Qin
    Tao, Ziqiang
    Meng, Lixin
    Natural Gas Industry, 2013, 33 (04) : 70 - 74
  • [7] Numerical Simulation of Fluid-Solid Coupling Heat Transfer in Excavation Roadway
    Bian, Menglong
    Dong, Xiaotong
    MINING METALLURGY & EXPLORATION, 2022, 39 (04) : 1475 - 1485
  • [8] Fluid-Solid Coupling in Kinetic Two-Phase Flow Simulation
    Li, Wei
    Desbrun, Mathieu
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [10] Numerical Simulation of the Fluid-Solid Coupling Mechanism of Internal Erosion in Granular Soil
    Wang, Yu
    Chai, Junrui
    Xu, Zengguang
    Qin, Yuan
    Wang, Xin
    WATER, 2020, 12 (01)