An Algorithm for Solving Common Points of Convex Minimization Problems with Applications

被引:0
|
作者
Hanjing, Adisak [1 ]
Pholasa, Nattawut [2 ]
Suantai, Suthep [3 ,4 ]
机构
[1] Rajamangala Univ Technol Isan Surin Campus, Dept Sci & Math, Surin 32000, Thailand
[2] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[3] Chiang Mai Univ, Fac Sci, Data Sci Res Ctr, Dept Math, Chiang Mai 50200, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Math, Res Grp Math & Appl Math, Chiang Mai 50200, Thailand
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
Hilbert space; forward-backward algorithm; convergence theorems; convex minimization problems; fixed point; FORWARD-BACKWARD ALGORITHM; THRESHOLDING ALGORITHM; CONVERGENCE; MAPPINGS;
D O I
10.3390/sym15010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In algorithm development, symmetry plays a vital part in managing optimization problems in scientific models. The aim of this work is to propose a new accelerated method for finding a common point of convex minimization problems and then use the fixed point of the forward-backward operator to explain and analyze a weak convergence result of the proposed algorithm in real Hilbert spaces under certain conditions. As applications, we demonstrate the suggested method for solving image inpainting and image restoration problems.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A PARAMETERIZED THREE-OPERATOR SPLITTING ALGORITHM FOR NON-CONVEX MINIMIZATION PROBLEMS WITH APPLICATIONS
    Miao, Liuyi
    Tang, Yuchao
    Wang, Changlong
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (03): : 451 - 471
  • [22] COMMON FIXED POINTS OF A PAIR OF NON-EXPANSIVE MAPPINGS WITH APPLICATIONS TO CONVEX FEASIBILITY PROBLEMS
    Qin, Xiaolong
    Cho, Sun Young
    Zhou, Haiyun
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 241 - 252
  • [23] EXTRAGRADIENT-PROJECTION METHOD FOR SOLVING CONSTRAINED CONVEX MINIMIZATION PROBLEMS
    Ceng, Lu-Chuan
    Ansari, Qamrul Hasan
    Yao, Jen-Chih
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (03): : 341 - 359
  • [24] Convergence of a Proximal Point Algorithm for Solving Minimization Problems
    Hamdi, Abdelouahed
    Noor, M. A.
    Mukheimer, A. A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] Proximal point approach for solving convex minimization problems in positive curvature
    Kitkuan, Duangkamon
    Padcharoen, Anantachai
    Calderon, Kenyi
    Martinez-Moreno, Juan
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (02) : 333 - 342
  • [26] A New Prediction–Correction Primal–Dual Hybrid Gradient Algorithm for Solving Convex Minimization Problems with Linear Constraints
    Fahimeh Alipour
    Mohammad Reza Eslahchi
    Masoud Hajarian
    Journal of Mathematical Imaging and Vision, 2024, 66 : 231 - 245
  • [27] The CoMirror algorithm for solving nonsmooth constrained convex problems
    Beck, Amir
    Ben-Tal, Aharon
    Guttmann-Beck, Nili
    Tetruashvili, Luba
    OPERATIONS RESEARCH LETTERS, 2010, 38 (06) : 493 - 498
  • [28] A variable smoothing algorithm for solving convex optimization problems
    Bot, Radu Ioan
    Hendrich, Christopher
    TOP, 2015, 23 (01) : 124 - 150
  • [29] A finite steps algorithm for solving convex feasibility problems
    Rami, M. Ait
    Helmke, U.
    Moore, J. B.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 38 (01) : 143 - 160
  • [30] A penalty algorithm for solving convex separable knapsack problems
    Hoto, R. S., V
    Matioli, L. C.
    Santos, P. S. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387