Convergence of a Proximal Point Algorithm for Solving Minimization Problems

被引:2
|
作者
Hamdi, Abdelouahed [1 ]
Noor, M. A. [2 ]
Mukheimer, A. A. [1 ]
机构
[1] Prince Sultan Univ, Dept Math, Riyadh 11586, Saudi Arabia
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
VARIATIONAL-INEQUALITIES; BREGMAN FUNCTIONS;
D O I
10.1155/2012/142862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and consider a proximal point algorithm for solving minimization problems using the technique of Guler. This proximal point algorithm is obtained by substituting the usual quadratic proximal term by a class of convex nonquadratic distance-like functions. It can be seen as an extragradient iterative scheme. We prove the convergence rate of this new proximal point method under mild assumptions. Furthermore, it is shown that this estimate rate is better than the available ones.
引用
收藏
页数:13
相关论文
共 50 条
  • [2] On a proximal point algorithm for solving common fixed point problems and convex minimization problems in Geodesic spaces with positive curvature
    Khunpanuk, Chainarong
    Garodia, Chanchal
    Uddin, Izhar
    Pakkaranang, Nuttapol
    AIMS MATHEMATICS, 2022, 7 (05): : 9509 - 9523
  • [3] Modified proximal point algorithms involving convex combination technique for solving minimization problems with convergence analysis
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Uddin, Izhar
    Kumam, Poom
    Awwal, Aliyu Muhammed
    OPTIMIZATION, 2020, 69 (7-8) : 1655 - 1680
  • [4] On modified proximal point algorithms for solving minimization problems and fixed point problems in CAT(κ) spaces
    Pakkaranang, Nuttapol
    Kumam, Poom
    Wen, Ching-Feng
    Yao, Jen-Chih
    Cho, Yeol Je
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12369 - 12382
  • [5] Proximal point approach for solving convex minimization problems in positive curvature
    Kitkuan, Duangkamon
    Padcharoen, Anantachai
    Calderon, Kenyi
    Martinez-Moreno, Juan
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (02) : 333 - 342
  • [6] A GENERALIZED PROXIMAL POINT ALGORITHM FOR CERTAIN NONCONVEX MINIMIZATION PROBLEMS
    FUKUSHIMA, M
    MINE, H
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1981, 12 (08) : 989 - 1000
  • [7] On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
    Shefi, Ron
    Teboulle, Marc
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) : 27 - 46
  • [8] Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems
    Matsushita, Shin-ya
    Xu, Li
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) : 297 - 309
  • [9] Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems
    Shin-ya Matsushita
    Li Xu
    Set-Valued and Variational Analysis, 2013, 21 : 297 - 309
  • [10] HYBRID PROXIMAL POINT ALGORITHMS FOR SOLVING CONSTRAINED MINIMIZATION PROBLEMS IN BANACH SPACES
    Ceng, Lu-Chuan
    Huang, Shuechin
    Liou, Yeong-Cheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2B): : 805 - 820