Analysis of Web Browsing Data: A Guide

被引:1
|
作者
von Hohenberg, Bernhard Clemm [1 ,10 ]
Stier, Sebastian [2 ,8 ]
Cardenal, Ana S. [3 ]
Guess, Andrew M. [4 ,5 ]
Menchen-Trevino, Ericka [6 ]
Wojcieszak, Magdalena [7 ,9 ]
机构
[1] GESIS Leibniz Inst Social Sci, Cologne, Germany
[2] GESIS Leibniz Inst Social Sci, Computat Social Sci Dept, Cologne, Germany
[3] Univ Oberta Catalunya, Barcelona, Spain
[4] Princeton Univ, Polit & Publ Affairs, Princeton, NJ USA
[5] Princeton Univ, Ctr Informat Technol Policy, Princeton, NJ USA
[6] Amer Univ, Washington, DC USA
[7] Univ Calif Davis, Davis, CA USA
[8] Univ Mannheim, Sch Social Sci, Mannheim, Germany
[9] Univ Amsterdam, Amsterdam Sch Commun Res, Amsterdam, Netherlands
[10] GESIS Leibniz Inst SocialSciences, Dept Computat Social Sci, D-50667 Cologne, Germany
基金
欧洲研究理事会;
关键词
web browsing data; digital trace data; web tracking data; computational social science; ONLINE; NEWS;
D O I
10.1177/08944393241227868
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of individual-level browsing data, that is, the records of a person's visits to online content through a desktop or mobile browser, is of increasing importance for social scientists. Browsing data have characteristics that raise many questions for statistical analysis, yet to date, little hands-on guidance on how to handle them exists. Reviewing extant research, and exploring data sets collected by our four research teams spanning seven countries and several years, with over 14,000 participants and 360 million web visits, we derive recommendations along four steps: preprocessing the raw data; filtering out observations; classifying web visits; and modelling browsing behavior. The recommendations we formulate aim to foster best practices in the field, which so far has paid little attention to justifying the many decisions researchers need to take when analyzing web browsing data.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Browsing Behaviour Analysis using Data Mining
    Seemi, Farhana
    Aslam, Hania
    Mukhtar, Hamid
    Khattak, Sana
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (02) : 490 - 498
  • [42] Personalized Web Browsing Experience
    Barricelli, Barbara R.
    Padula, Marco
    Scala, Paolo L.
    [J]. 20TH ACM CONFERENCE ON HYPERTEXT AND HYPERMEDIA (HYPERTEXT 2009), 2009, : 345 - 346
  • [43] Compartmentalizing Web Browsing with Sailboat
    Kulkarni, Minchu
    Kapoor, Kshitij
    Madala, Deva Surya Vivek
    Bansal, Sanchit
    Hangal, Sudheendra
    [J]. PROCEEDINGS OF THE 10TH INDIAN CONFERENCE ON HUMAN-COMPUTER INTERACTION (INDIA HCI 2019), 2019, : 75 - 82
  • [44] WEB BROWSING FOR VISUALLY IMPAIRED
    Uchyigit, Gulden
    [J]. ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL HCI: HUMAN-COMPUTER INTERACTION, 2008, : 405 - 408
  • [45] Cooperative Mobile Web Browsing
    Perrucci, G. P.
    Fitzek, F. H. P.
    Zhang, Q.
    Katz, M. D.
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2009,
  • [46] Smart Mobile Web Browsing
    Albasir, Abdurhman
    Naik, Kshirasagar
    Abdunabi, Tarek
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 671 - 678
  • [47] Web browsing and spyware intrusion
    Shukla, S
    Nah, FH
    [J]. COMMUNICATIONS OF THE ACM, 2005, 48 (08) : 85 - 90
  • [48] Where to start browsing the web?
    Fogaras, D
    [J]. INNOVATIVE INTERNET COMMUNITY SYSTEMS, 2003, 2877 : 65 - 79
  • [49] Cognition, Age, and Web Browsing
    Hanson, Vicki L.
    [J]. UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION: ADDRESSING DIVERSITY, PT I, PROCEEDINGS: ADDRESSING DIVERSITY, 2009, 5614 : 245 - 250
  • [50] Mobile Web Browsing Techniques
    Ahmad, Zahiruddin
    Hong, Jer Lang
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 : 283 - 291