Analysis of Web Browsing Data: A Guide

被引:1
|
作者
von Hohenberg, Bernhard Clemm [1 ,10 ]
Stier, Sebastian [2 ,8 ]
Cardenal, Ana S. [3 ]
Guess, Andrew M. [4 ,5 ]
Menchen-Trevino, Ericka [6 ]
Wojcieszak, Magdalena [7 ,9 ]
机构
[1] GESIS Leibniz Inst Social Sci, Cologne, Germany
[2] GESIS Leibniz Inst Social Sci, Computat Social Sci Dept, Cologne, Germany
[3] Univ Oberta Catalunya, Barcelona, Spain
[4] Princeton Univ, Polit & Publ Affairs, Princeton, NJ USA
[5] Princeton Univ, Ctr Informat Technol Policy, Princeton, NJ USA
[6] Amer Univ, Washington, DC USA
[7] Univ Calif Davis, Davis, CA USA
[8] Univ Mannheim, Sch Social Sci, Mannheim, Germany
[9] Univ Amsterdam, Amsterdam Sch Commun Res, Amsterdam, Netherlands
[10] GESIS Leibniz Inst SocialSciences, Dept Computat Social Sci, D-50667 Cologne, Germany
基金
欧洲研究理事会;
关键词
web browsing data; digital trace data; web tracking data; computational social science; ONLINE; NEWS;
D O I
10.1177/08944393241227868
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of individual-level browsing data, that is, the records of a person's visits to online content through a desktop or mobile browser, is of increasing importance for social scientists. Browsing data have characteristics that raise many questions for statistical analysis, yet to date, little hands-on guidance on how to handle them exists. Reviewing extant research, and exploring data sets collected by our four research teams spanning seven countries and several years, with over 14,000 participants and 360 million web visits, we derive recommendations along four steps: preprocessing the raw data; filtering out observations; classifying web visits; and modelling browsing behavior. The recommendations we formulate aim to foster best practices in the field, which so far has paid little attention to justifying the many decisions researchers need to take when analyzing web browsing data.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] WEB USER PROFILING BASED ON BROWSING BEHAVIOR ANALYSIS
    Fan, Xiao-Xi
    Chow, Kam-Pui
    Xu, Fei
    ADVANCES IN DIGITAL FORENSICS X, 2014, 433 : 57 - 71
  • [22] Browsing - Not groping - The Web
    Reisman, S
    IEEE MULTIMEDIA, 1996, 3 (02) : 4 - 5
  • [23] An Exploratory Analysis of Browsing Behavior of Web News on Twitter
    Han, Hao
    Nakawatase, Hidekazu
    Oyama, Keizo
    PROCEEDINGS OF THE 2012 ASE INTERNATIONAL CONFERENCE ON SOCIAL INFORMATICS (SOCIALINFORMATICS 2012), 2012, : 86 - 95
  • [24] Semantic web browsing
    Papadakis, Ioannis
    Stefanidakis, Michalis
    WEBIST 2007: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, VOL WIA: WEB INTERFACES AND APPLICATIONS, 2007, : 400 - +
  • [25] Private Web browsing
    Cent For High Assurance Computer, Systems, Washington, United States
    J Computer Secur, 3 (237-248):
  • [26] Browsing the Web.
    Accardi, JJ
    LIBRARY JOURNAL, 2000, 125 (06) : 122 - 122
  • [27] Browsing the Semantic Web
    Lassila, Ora
    SEVENTEENTH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, : 365 - +
  • [28] Combining ethnographic and clickstream data to identify user Web browsing strategies
    Clark, L
    Ting, IH
    Kimble, C
    Wright, P
    Kudenko, D
    INFORMATION RESEARCH-AN INTERNATIONAL ELECTRONIC JOURNAL, 2006, 11 (02):
  • [29] Leveraging Web browsing performance data for network monitoring: a data-driven approach
    Taibi, Imane
    Hadjadj-Aoul, Yassine
    Barakat, Chadi
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6121 - 6126
  • [30] Nordic Exome Variant Catalogue a web resource for genomic data browsing
    Sipila, Timo Petteri
    Happola, Paavo
    Kals, Mart
    Metspalu, Andres
    Palta, Priit
    Palotie, Aarno
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 393 - 393