Genome-scale metabolic model led engineering of Nothapodytes nimmoniana plant cells for high camptothecin production

被引:0
|
作者
Murali, Sarayu [1 ]
Ibrahim, Maziya [1 ,2 ,3 ]
Rajendran, Hemalatha [1 ]
Shagun, Shagun [4 ]
Masakapalli, Shyam Kumar [4 ]
Raman, Karthik [1 ,2 ,3 ]
Srivastava, Smita [1 ]
机构
[1] Indian Inst Technol Madras, Bhupat & Jyoti Mehta Sch Biosci, Dept Biotechnol, Chennai, India
[2] Indian Inst Technol Madras, Initiat Biol Syst Engn, Chennai, India
[3] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci & Artificial Intelligenc, Chennai, India
[4] Indian Inst Technol Mandi, Sch Biosci & Bioengn, Mandi, Himachal Prades, India
来源
关键词
camptothecin yield; metabolic engineering; genome-scale metabolic model; enzyme overexpression; Agrobacterium tumefaciens transformation; strictosidine synthase; CONSTRAINT-BASED MODELS; STRICTOSIDINE SYNTHASE; ALKALOID PRODUCTION; OVER-EXPRESSION; RECONSTRUCTION; ARABIDOPSIS; NETWORK; TISSUE; GENES; BIOSYNTHESIS;
D O I
10.3389/fpls.2023.1207218
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Camptothecin (CPT) is a vital monoterpene indole alkaloid used in anti-cancer therapeutics. It is primarily derived from Camptotheca acuminata and Nothapodytes nimmoniana plants that are indigenous to Southeast Asia. Plants have intricate metabolic networks and use them to produce secondary metabolites such as CPT, which is a prerequisite for rational metabolic engineering design to optimize their production. By reconstructing metabolic models, we can predict plant metabolic behavior, facilitating the selection of suitable approaches and saving time, cost, and energy, over traditional hit and trial experimental approaches. In this study, we reconstructed a genome-scale metabolic model for N. nimmoniana (NothaGEM iSM1809) and curated it using experimentally obtained biochemical data. We also used in silico tools to identify and rank suitable enzyme targets for overexpression and knockout to maximize camptothecin production. The predicted over-expression targets encompass enzymes involved in the camptothecin biosynthesis pathway, including strictosidine synthase and geraniol 10-hydroxylase, as well as targets related to plant metabolism, such as amino acid biosynthesis and the tricarboxylic acid cycle. The top-ranked knockout targets included reactions responsible for the formation of folates and serine, as well as the conversion of acetyl CoA and oxaloacetate to malate and citrate. One of the top-ranked overexpression targets, strictosidine synthase, was chosen to generate metabolically engineered cell lines of N. nimmoniana using Agrobacterium tumefaciens-mediated transformation. The transformed cell line showed a 5-fold increase in camptothecin production, with a yield of up to 5 & mu;g g(-1).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Using genome-scale model to predict the metabolic engineering impact on Escherichia coli metabolism during succinic acid production optimization
    Bodor, Zsolt
    Fazakas, Andrea
    Bodor, Katalin
    Kovacs, Erika
    Miklossy, Ildiko
    Albert, Beata
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2020, 25 (03): : 1666 - 1676
  • [42] Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement
    Di Huang
    Shanshan Li
    Menglei Xia
    Jianping Wen
    Xiaoqiang Jia
    Microbial Cell Factories, 12
  • [43] Reconstruction and analysis of a genome-scale metabolic model for Agrobacterium tumefaciens
    Xu, Nan
    Yang, Qiyuan
    Yang, Xiaojing
    Wang, Mingqi
    Guo, Minliang
    MOLECULAR PLANT PATHOLOGY, 2021, 22 (03) : 348 - 360
  • [44] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    Bernstein, David B.
    Sulheim, Snorre
    Almaas, Eivind
    Segre, Daniel
    GENOME BIOLOGY, 2021, 22 (01)
  • [45] Construction and application of the genome-scale metabolic model of Streptomyces radiopugnans
    Zhang, Zhidong
    Guo, Qi
    Qian, Jinyi
    Ye, Chao
    Huang, He
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [46] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balagurunathan, Balaji
    Jonnalagadda, Sudhakar
    Tan, Lily
    Srinivasan, Rajagopalan
    MICROBIAL CELL FACTORIES, 2012, 11
  • [47] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Simonas Marcišauskas
    Boyang Ji
    Jens Nielsen
    BMC Bioinformatics, 20
  • [48] Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana
    Shah, Ab Rauf
    Ahmad, Ahmad
    Srivastava, Shireesh
    Ali, B. M. Jaffar
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 26 : 354 - 364
  • [49] Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    Montagud, Arnau
    Navarro, Emilio
    Fernandez de Cordoba, Pedro
    Urchueguia, Javier F.
    Patil, Kiran Raosaheb
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [50] Genome-scale metabolic model of oleaginous yeast Papiliotrema laurentii
    Ventorim, Rafaela Zandonade
    de Moura Ferreira, Mauricio Alexander
    Menezes de Almeida, Eduardo Luis
    Kerkhoven, Eduard J.
    da Silveira, Wendel Batista
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 180