Genome-scale metabolic model led engineering of Nothapodytes nimmoniana plant cells for high camptothecin production

被引:0
|
作者
Murali, Sarayu [1 ]
Ibrahim, Maziya [1 ,2 ,3 ]
Rajendran, Hemalatha [1 ]
Shagun, Shagun [4 ]
Masakapalli, Shyam Kumar [4 ]
Raman, Karthik [1 ,2 ,3 ]
Srivastava, Smita [1 ]
机构
[1] Indian Inst Technol Madras, Bhupat & Jyoti Mehta Sch Biosci, Dept Biotechnol, Chennai, India
[2] Indian Inst Technol Madras, Initiat Biol Syst Engn, Chennai, India
[3] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci & Artificial Intelligenc, Chennai, India
[4] Indian Inst Technol Mandi, Sch Biosci & Bioengn, Mandi, Himachal Prades, India
来源
关键词
camptothecin yield; metabolic engineering; genome-scale metabolic model; enzyme overexpression; Agrobacterium tumefaciens transformation; strictosidine synthase; CONSTRAINT-BASED MODELS; STRICTOSIDINE SYNTHASE; ALKALOID PRODUCTION; OVER-EXPRESSION; RECONSTRUCTION; ARABIDOPSIS; NETWORK; TISSUE; GENES; BIOSYNTHESIS;
D O I
10.3389/fpls.2023.1207218
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Camptothecin (CPT) is a vital monoterpene indole alkaloid used in anti-cancer therapeutics. It is primarily derived from Camptotheca acuminata and Nothapodytes nimmoniana plants that are indigenous to Southeast Asia. Plants have intricate metabolic networks and use them to produce secondary metabolites such as CPT, which is a prerequisite for rational metabolic engineering design to optimize their production. By reconstructing metabolic models, we can predict plant metabolic behavior, facilitating the selection of suitable approaches and saving time, cost, and energy, over traditional hit and trial experimental approaches. In this study, we reconstructed a genome-scale metabolic model for N. nimmoniana (NothaGEM iSM1809) and curated it using experimentally obtained biochemical data. We also used in silico tools to identify and rank suitable enzyme targets for overexpression and knockout to maximize camptothecin production. The predicted over-expression targets encompass enzymes involved in the camptothecin biosynthesis pathway, including strictosidine synthase and geraniol 10-hydroxylase, as well as targets related to plant metabolism, such as amino acid biosynthesis and the tricarboxylic acid cycle. The top-ranked knockout targets included reactions responsible for the formation of folates and serine, as well as the conversion of acetyl CoA and oxaloacetate to malate and citrate. One of the top-ranked overexpression targets, strictosidine synthase, was chosen to generate metabolically engineered cell lines of N. nimmoniana using Agrobacterium tumefaciens-mediated transformation. The transformed cell line showed a 5-fold increase in camptothecin production, with a yield of up to 5 & mu;g g(-1).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production
    Zhang, Ke
    Zhao, Weishu
    Rodionov, Dmitry A.
    Rubinstein, Gabriel M.
    Nguyen, Diep N.
    Tanwee, Tania N. N.
    Crosby, James
    Bing, Ryan G.
    Kelly, Robert M.
    Adams, Michael W. W.
    Zhang, Ying
    MSYSTEMS, 2021, 6 (03)
  • [22] Genome-Scale Metabolic Reconstruction of Actinomycetes for Antibiotics Production
    Mohite, Omkar S.
    Weber, Tilmann
    Kim, Hyun Uk
    Lee, Sang Yup
    BIOTECHNOLOGY JOURNAL, 2019, 14 (01)
  • [23] Genome-scale metabolic model of Chromochloris, an emerging model organism for sustainable fuel production
    Boyle, Nanette
    Metcalf, Alexander
    Nagygyor, Anthony
    Prentice, Walter
    Ramsey, Stuart
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Next-generation genome-scale models for metabolic engineering
    King, Zachary A.
    Lloyd, Colton J.
    Feist, Adam M.
    Palsson, Bernhard O.
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 35 : 23 - 29
  • [25] Systematically gap-filling the genome-scale metabolic model of CHO cells
    Fouladiha, Hamideh
    Marashi, Sayed-Amir
    Li, Shangzhong
    Li, Zerong
    Masson, Helen O.
    Vaziri, Behrouz
    Lewis, Nathan E.
    BIOTECHNOLOGY LETTERS, 2021, 43 (01) : 73 - 87
  • [26] Systematically gap-filling the genome-scale metabolic model of CHO cells
    Hamideh Fouladiha
    Sayed-Amir Marashi
    Shangzhong Li
    Zerong Li
    Helen O. Masson
    Behrouz Vaziri
    Nathan E. Lewis
    Biotechnology Letters, 2021, 43 : 73 - 87
  • [27] Constraints-based genome-scale metabolic simulation for systems metabolic engineering
    Park, Jong Myoung
    Kim, Tae Yong
    Lee, Sang Yup
    BIOTECHNOLOGY ADVANCES, 2009, 27 (06) : 979 - 988
  • [28] MEMOTE for standardized genome-scale metabolic model testing
    Lieven, Christian
    Beber, Moritz E.
    Olivier, Brett G.
    Bergmann, Frank T.
    Ataman, Meric
    Babaei, Parizad
    Bartell, Jennifer A.
    Blank, Lars M.
    Chauhan, Siddharth
    Correia, Kevin
    Diener, Christian
    Draeger, Andreas
    Ebert, Birgitta E.
    Edirisinghe, Janaka N.
    Faria, Jose P.
    Feist, Adam M.
    Fengos, Georgios
    Fleming, Ronan M. T.
    Garcia-Jimenez, Beatriz
    Hatzimanikatis, Vassily
    van Helvoirt, Wout
    Henry, Christopher S.
    Hermjakob, Henning
    Herrgard, Markus J.
    Kaafarani, Ali
    Kim, Hyun Uk
    King, Zachary
    Klamt, Steffen
    Klipp, Edda
    Koehorst, Jasper J.
    Koenig, Matthias
    Lakshmanan, Meiyappan
    Lee, Dong-Yup
    Lee, Sang Yup
    Lee, Sunjae
    Lewis, Nathan E.
    Liu, Filipe
    Ma, Hongwu
    Machado, Daniel
    Mahadevan, Radhakrishnan
    Maia, Paulo
    Mardinoglu, Adil
    Medlock, Gregory L.
    Monk, Jonathan M.
    Nielsen, Jens
    Nielsen, Lars Keld
    Nogales, Juan
    Nookaew, Intawat
    Palsson, Bernhard O.
    Papin, Jason A.
    NATURE BIOTECHNOLOGY, 2020, 38 (03) : 272 - 276
  • [29] Genome-scale metabolic model of Helicobacter pylori 26695
    Schilling, CH
    Covert, MW
    Famili, I
    Church, GM
    Edwards, JS
    Palsson, BO
    JOURNAL OF BACTERIOLOGY, 2002, 184 (16) : 4582 - 4593
  • [30] Cell factory for succinic acid production:: Genome-scale analysis and metabolic engineering of Mannheimia succiniciproducens
    Lee, SY
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S93 - S93