Deep Industrial Image Anomaly Detection: A Survey

被引:43
|
作者
Liu, Jiaqi [1 ]
Xie, Guoyang [1 ,2 ]
Wang, Jinbao [1 ]
Li, Shangnian [1 ]
Wang, Chengjie [3 ]
Zheng, Feng [1 ]
Jin, Yaochu [2 ,4 ]
机构
[1] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[2] Univ Surrey, NICE Grp, Guildford GU2 7YX, England
[3] Tencent, Youtu Lab, Shanghai 200233, Peoples R China
[4] Bielefeld Univ, NICE Grp, D-33619 Bielefeld, Germany
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Image anomaly detection; defect detection; industrial manufacturing; deep learning; computer vision; DEFECT DETECTION; SALIENCY DETECTION; SEGMENTATION; LOCALIZATION; TRANSFORMER; NETWORK; SAMPLES; MODEL;
D O I
10.1007/s11633-023-1459-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from industrial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
引用
收藏
页码:104 / 135
页数:32
相关论文
共 50 条
  • [31] Prior Normality Prompt Transformer for Multiclass Industrial Image Anomaly Detection
    Yao, Haiming
    Cao, Yunkang
    Luo, Wei
    Zhang, Weihang
    Yu, Wenyong
    Shen, Weiming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (10) : 11866 - 11876
  • [32] Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection
    Ribeiro, Diogo
    Matos, Luis Miguel
    Moreira, Guilherme
    Pilastri, Andre
    Cortez, Paulo
    COMPUTERS, 2022, 11 (04)
  • [33] Adaptive Context-Aware Distillation for Industrial Image Anomaly Detection
    He, Yuan
    Yang, Hua
    Yin, Zhouping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [34] Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
    Tang, Shijie
    Ding, Yong
    Wang, Huiyong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 1129 - 1150
  • [35] Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data
    Liu, Wenqiang
    Yan, Li
    Ma, Ningning
    Wang, Gaozhou
    Ma, Xiaolong
    Liu, Peishun
    Tang, Ruichun
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [36] DAICS: A Deep Learning Solution for Anomaly Detection in Industrial Control Systems
    Abdelaty, Maged
    Doriguzzi-Corin, Roberto
    Siracusa, Domenico
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 1117 - 1129
  • [37] Anomaly Detection of GAN Industrial Image Based on Attention Feature Fusion
    Zhang, Lin
    Dai, Yang
    Fan, Fuyou
    He, Chunlin
    SENSORS, 2023, 23 (01)
  • [38] IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing
    Xie, Guoyang
    Wang, Jinbao
    Liu, Jiaqi
    Lyu, Jiayi
    Liu, Yong
    Wang, Chengjie
    Zheng, Feng
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (05) : 2720 - 2733
  • [39] Anomaly Detection: A Survey
    Chandola, Varun
    Banerjee, Arindam
    Kumar, Vipin
    ACM COMPUTING SURVEYS, 2009, 41 (03)
  • [40] Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey
    Duong, Huu-Thanh
    Le, Viet-Tuan
    Hoang, Vinh Truong
    SENSORS, 2023, 23 (11)