Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE
    Zhao Shu-he
    Feng Xue-zhi
    Kang Gao-ding
    Ramadan, Elnazir
    CHINESE GEOGRAPHICAL SCIENCE, 2002, 12 (03) : 244 - 248
  • [32] Multi-Source Remote Sensing Image Fusion Method Based on Sparse representation
    Yu, Xianchuan
    Gao, Guanyin
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: IMAGE PROCESSING AND PATTERN RECOGNITION, 2014, 9301
  • [33] An Algorithm Based on PCGP Image Fusion for Multi-Source Remote Sensing Images
    Ji, Zhenyuan
    Xu, Li
    Wang, Haotian
    Zhang, Yun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2860 - 2863
  • [34] Summer maize LAI retrieval based on multi-source remote sensing data
    Pan, Fangjiang
    Guo, Jinkai
    Miao, Jianchi
    Xu, Haiyu
    Tian, Bingquan
    Gong, Daocai
    Zhao, Jing
    Lan, Yubin
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2023, 16 (02) : 179 - 186
  • [35] Multi-source remote sensing image fusion based on nonsubsampled contourlet transform
    Li, Xiujuan
    Li, Shutao
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 830 - +
  • [36] Multi-source remote sensing data fusion based on wavelet transformation algorithm
    Ding, JL
    Zhu, Q
    Zhang, Y
    Tiyip, T
    Liu, CS
    Sun, R
    Pan, XL
    ECOSYSTEMS DYNAMICS, ECOSYSTEM-SOCIETY INTERACTIONS, AND REMOTE SENSING APPLICATIONS FOR SEMI-ARID AND ARID LAND, PTS 1 AND 2, 2003, 4890 : 262 - 269
  • [37] Green Tide Information Extraction Based on Multi-source Remote Sensing Data
    Liang, Tingting
    Ke, Lina
    Fan, Jianchao
    Zhao, Jianhua
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 460 - 465
  • [38] Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing
    Tran Ngoc Khanh Ni
    Hoang Cong Tin
    Vo Trong Thach
    Jamet, Cedric
    Saizen, Izuru
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (06)
  • [39] Multi-source remote sensing data shows a significant increase in vegetation on the Tibetan Plateau since 2000
    Yang, Junliu
    Xin, Zhongbao
    Huang, Yanzhang
    Liang, Xiaoyu
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2023, 47 (04): : 597 - 624
  • [40] A comparative study on the applicability and effectiveness of NSVI and NDVI for estimating fractional vegetation cover based on multi-source remote sensing image
    Xu, Zhang-hua
    Li, Yi-fan
    Li, Bin
    Hao, Zhen-bang
    Lin, Lili
    Hu, Xin-yu
    Zhou, Xin
    Yu, Hui
    Xiang, Song-yang
    Pascal, Mpomboum -Lingom -Fils
    Shen, Wan-ling
    He, An-qi
    Chen, Ling-yan
    Li, Zeng-lu
    GEOCARTO INTERNATIONAL, 2023, 38 (01)