Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Comparison of the Vegetation Index of Reclamation Mining Areas Calculated by Multi-Source Remote Sensing Data
    Hu, Jiameng
    Ye, Baoying
    Bai, Zhongke
    Hui, Jiawei
    LAND, 2022, 11 (03)
  • [22] Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling
    Zhao, Yu-Huan
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Chen, Richard H.
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (07):
  • [23] Mallat fusion for multi-source remote sensing classification
    Cao, Dongdong
    Yin, Qian
    Guo, Ping
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 588 - 593
  • [24] Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data
    Hong, Fangzhou
    He, Guojin
    Wang, Guizhou
    Zhang, Zhaoming
    Peng, Yan
    REMOTE SENSING, 2023, 15 (13)
  • [25] Classification and Monitoring of Salt Marsh Vegetation in the Yellow River Delta Based on Multi-Source Remote Sensing Data Fusion
    Xu, Ran
    Fan, Yanguo
    Fan, Bowen
    Feng, Guangyue
    Li, Ruotong
    SENSORS, 2025, 25 (02)
  • [26] AUTOMATED MULTI-SOURCE REMOTE SENSING IMAGE REGISTRATION BASED ON PHASE CONGRUENCY
    Ye, Yuanxin
    Xiong, Lian
    Shan, Jie
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VI, 2012, 39-B6 : 189 - 194
  • [27] Automatic registration of multi-source remote sensing images based on region growing
    Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    Ni, D. (nid12@mails.tsinghua.edu.cn), 1600, Science Press (40):
  • [28] Multi-source remote sensing image fusion based on support vector machine
    Shu-he Zhao
    Feng Xue-zhi
    Guo-ding Kang
    Elnazir Ramadan
    Chinese Geographical Science, 2002, 12 : 244 - 248
  • [29] MULTI-SOURCE REMOTE SENSING IMAGES MATCHING BASED ON IMPROVED KAZE ALGORITHM
    Wang Zong-wei
    Wang Hua-bin
    Wang Guang-hui
    Li Can-hai
    Yang Hua-chao
    3RD ISPRS IWIDF 2013, 2013, 40-7-W1 : 109 - 113
  • [30] Sensitivity Assessment of Land Desertification in China Based on Multi-Source Remote Sensing
    Ren, Yu
    Liu, Xiangjun
    Zhang, Bo
    Chen, Xidong
    REMOTE SENSING, 2023, 15 (10)