Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] MONITORING VEGETATION RESTORATION AFTER WILDFIRES IN TYPICAL BOREAL FORESTS BASED ON MULTI-SOURCE REMOTE SENSING DATA
    Jiang, Bohan
    Chen, Wei
    Wu, Yu
    Gao, Zhanping
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 581 - 584
  • [2] Estimation of multi-scale urban vegetation coverage based on multi-source remote sensing images
    Gao Yong-Gang
    Xu Han-Qiu
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (02) : 225 - 234
  • [3] Assessment of vegetation cover change in the Ebinur Basin based on Multi-source Remote Sensing Data
    Yu, Xiao
    Zhang, Shijie
    Yan, Junping
    Du, Qiang
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS III AND IV, 2013, : 8985 - 8991
  • [4] Monitoring and analysis on vegetation information of mining area based on the multi-source remote sensing data
    Zhang, Xicheng
    Li, Xinzhi
    Wang, Ping
    Yin, Xianfen
    Journal of Information and Computational Science, 2009, 6 (05): : 2097 - 2104
  • [5] Estimating soil profile salinity under vegetation cover based on UAV multi-source remote sensing
    Luo, Zhenhai
    Deng, Meihua
    Tang, Min
    Liu, Rui
    Feng, Shaoyuan
    Zhang, Chao
    Zheng, Zhen
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Hierarchical Geographic Object-Based Vegetation Type Extraction Based on Multi-Source Remote Sensing Data
    Mao, Xuegang
    Deng, Yueqing
    Zhu, Liang
    Yao, Yao
    FORESTS, 2020, 11 (12): : 1 - 19
  • [7] Forest Fire Spread Monitoring and Vegetation Dynamics Detection Based on Multi-Source Remote Sensing Images
    Tian, Yuping
    Wu, Zechuan
    Li, Mingze
    Wang, Bin
    Zhang, Xiaodi
    REMOTE SENSING, 2022, 14 (18)
  • [8] Vegetation index analysis of multi-source remote sensing data in coal mine wasteland
    Han, Yunxia
    Li, Minzan
    Li, Daoliang
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2007, 50 (05) : 1243 - 1248
  • [9] Forest Structure Mapping of Boreal Coniferous Forests Using Multi-Source Remote Sensing Data
    Sa, Rula
    Fan, Wenyi
    REMOTE SENSING, 2024, 16 (11)
  • [10] Modeling Multi-source Remote Sensing Image Classifier Based on the MDL Principle: Experimental Studies
    Xia, Huaiying
    Hu, Rukun
    Xu, Bingxin
    Guo, Ping
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,