The Simultaneous Fractional Dimension of Graph Families

被引:1
|
作者
Kang, Cong X. [1 ]
Peterin, Iztok [2 ]
Yi, Eunjeong [1 ]
机构
[1] Texas A&M Univ Galveston, Galveston, TX 77553 USA
[2] Univ Maribor, FEECS Smetanova 17, Maribor 2000, Slovenia
关键词
Metric dimension; fractional metric dimension; resolving function; simultaneous (metric) dimension; simultaneous fractional (metric) dimension; METRIC DIMENSION;
D O I
10.1007/s10114-023-1205-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = 1$$\end{document}, examine C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=|V|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = {{|V|} \over 2}$$\end{document}, and determine Sdf(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C})$$\end{document} when C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} is a family of vertex-transitive graphs. We also obtain some results on the simultaneous fractional dimension of a graph and its complement.
引用
收藏
页码:1425 / 1441
页数:17
相关论文
共 50 条
  • [31] The Rotational Dimension of a Graph
    Goering, Frank
    Helmberg, Christoph
    Wappler, Markus
    JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 283 - 302
  • [32] The lattice dimension of a graph
    Eppstein, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) : 585 - 592
  • [33] The Krausz dimension of a graph
    Beineke, LW
    Broere, I
    UTILITAS MATHEMATICA, 2006, 69 : 183 - 194
  • [34] The threshold dimension of a graph
    Mol, Lucas
    Murphy, Matthew J. H.
    Oellermann, Ortrud R.
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 118 - 133
  • [35] DIMENSION OF A COMPARABILITY GRAPH
    TROTTER, WT
    MOORE, JI
    SUMNER, DP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A32 - A32
  • [36] The partition dimension of a graph
    Chartrand G.
    Salehi E.
    Zhang P.
    aequationes mathematicae, 2000, 59 (1) : 45 - 54
  • [37] On the broadcast dimension of a graph
    Zhang, Emily
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 85 : 313 - 339
  • [38] The convex dimension of a graph
    Halman, Nir
    Onn, Shmuel
    Rothbjum, Uriel G.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) : 1373 - 1383
  • [39] Topological graph dimension
    Smyth, Michael B.
    Tsaur, Rueiher
    Stewart, Iain
    DISCRETE MATHEMATICS, 2010, 310 (02) : 325 - 329
  • [40] The Fibonacci dimension of a graph
    Cabello, Sergio
    Eppstein, David
    Klavzar, Sandi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):