The Simultaneous Fractional Dimension of Graph Families

被引:1
|
作者
Kang, Cong X. [1 ]
Peterin, Iztok [2 ]
Yi, Eunjeong [1 ]
机构
[1] Texas A&M Univ Galveston, Galveston, TX 77553 USA
[2] Univ Maribor, FEECS Smetanova 17, Maribor 2000, Slovenia
关键词
Metric dimension; fractional metric dimension; resolving function; simultaneous (metric) dimension; simultaneous fractional (metric) dimension; METRIC DIMENSION;
D O I
10.1007/s10114-023-1205-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = 1$$\end{document}, examine C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} satisfying Sdf(C)=|V|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C}) = {{|V|} \over 2}$$\end{document}, and determine Sdf(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{S}}{{\rm{d}}_f}({\cal C})$$\end{document} when C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} is a family of vertex-transitive graphs. We also obtain some results on the simultaneous fractional dimension of a graph and its complement.
引用
收藏
页码:1425 / 1441
页数:17
相关论文
共 50 条
  • [21] ON DIMENSION OF A GRAPH
    ERDOS, P
    HARARY, F
    TUTTE, WT
    MATHEMATIKA, 1965, 12 (24P2) : 118 - &
  • [22] THE DIMENSION OF A GRAPH
    GODSIL, CD
    MCKAY, BD
    QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (124): : 423 - 427
  • [23] Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension
    Zeng, Liangwei
    Mihalache, Dumitru
    Malomed, Boris A.
    Lu, Xiaowei
    Cai, Yi
    Zhu, Qifan
    Li, Jingzhen
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [24] On the metric dimension of the total graph of a graph
    Sooryanarayana, B.
    Shreedhar, K.
    Narahari, N.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 82 - 95
  • [25] On the metric dimension of a graph
    Sooryanarayana, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (04): : 413 - 415
  • [26] The fiber dimension of a graph
    Windisch, Tobias
    DISCRETE MATHEMATICS, 2019, 342 (01) : 168 - 177
  • [27] On the edge dimension of a graph
    Zubrilina, Nina
    DISCRETE MATHEMATICS, 2018, 341 (07) : 2083 - 2088
  • [28] On the Forcing Dimension of a Graph
    Abadi, Behrooz Bagheri Ghavam
    Zaghian, Ali
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (02): : 129 - 136
  • [29] CIRCULAR DIMENSION OF A GRAPH
    FEINBERG, RB
    DISCRETE MATHEMATICS, 1979, 25 (01) : 27 - 31
  • [30] DIMENSION OF A COMPARABILITY GRAPH
    TROTTER, WT
    MOORE, JI
    SUMNER, DP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) : 35 - 38