Neural network representation of time integrators

被引:0
|
作者
Lohner, Rainald [1 ,2 ]
Antil, Harbir [3 ,4 ]
机构
[1] George Mason Univ, Ctr Computat Fluid Dynam, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Phys, Fairfax, VA 22030 USA
[3] George Mason Univ, Ctr Math & Artificial Intelligence, Fairfax, VA USA
[4] George Mason Univ, Dept Math Sci, Fairfax, VA USA
关键词
deep neural networks; Runge-Kutta; numerical integration;
D O I
10.1002/nme.7306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge-Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics-based integrators is the DNN approximation of the right-hand side. This allows to clearly delineate the approximation estimates for right-hand side errors and time integration errors. The architecture required for the integration of a simple mass-damper-stiffness case is included as an example.
引用
收藏
页码:4192 / 4198
页数:7
相关论文
共 50 条
  • [41] A hierarchical hybrid neural model with time integrators in long-term load forecasting
    Carpinteiro, Otavio A. S.
    Lima, Isaias
    Moreira, Edmilson M.
    Pinheiro, Carlos A. M.
    Seraphim, Enzo
    Pinto, J. Vantuil L.
    NEURAL COMPUTING & APPLICATIONS, 2009, 18 (08): : 1057 - 1063
  • [42] Long-term load forecasting via a hierarchical neural model with time integrators
    Carpinteiro, Otavio A. S.
    Leme, Rafael C.
    de Souza, Antonio C. Zambroni
    Pinheiro, Carlos A. M.
    Moreira, Edmilson M.
    ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (3-4) : 371 - 378
  • [43] Invariant representation of images by Pulse Coupled Neural Network
    Forgác, R
    Mokris, I
    STATE OF THE ART IN COMPUTATIONAL INTELLIGENCE, 2000, : 33 - 38
  • [44] Analysis of competing neural network knowledge representation strategies
    Bastani, F.B.
    Iyengar, S.S.
    Gulati, S.
    Neural Networks, 1988, 1 (1 SUPPL)
  • [45] Neural network representation and identification of finite state automata
    Kuroe, Y
    Mori, T
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 2328 - 2332
  • [46] Investigating the Effect of Data Representation On Neural Network and Regression
    Siraj, Fadzilah
    El Fallah, Ehab A. Omer
    COMPUTING & INFORMATICS, 2009, : 67 - 72
  • [47] NEURAL-NETWORK REPRESENTATION OF FATIGUE DAMAGE DYNAMICS
    LI, CJ
    RAY, A
    SMART MATERIALS AND STRUCTURES, 1995, 4 (02) : 126 - 133
  • [48] A Probabilistic Vector Representation and Neural Network for Text Classification
    Bounabi, Mariem
    El Moutaouakil, Karim
    Satori, Khalid
    BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 343 - 355
  • [49] Performance evaluation of neural network hardware using time-shared bus and integer representation architecture
    Yasunaga, M
    Ochiai, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1996, E79D (06) : 888 - 896
  • [50] Representation of Relations by Planes in Neural Network Language Model
    Ebisu, Takuma
    Ichise, Ryutaro
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT I, 2016, 9947 : 300 - 307