A hierarchical hybrid neural model with time integrators in long-term load forecasting

被引:4
|
作者
Carpinteiro, Otavio A. S. [1 ]
Lima, Isaias [1 ]
Moreira, Edmilson M. [1 ]
Pinheiro, Carlos A. M. [1 ]
Seraphim, Enzo [1 ]
Pinto, J. Vantuil L. [1 ]
机构
[1] Univ Fed Itajuba, Res Grp Syst & Comp Engn, BR-37500903 Itajuba, MG, Brazil
来源
NEURAL COMPUTING & APPLICATIONS | 2009年 / 18卷 / 08期
关键词
Neural networks; Time-series forecasting; Long-term electrical load forecasting; SPATIOTEMPORAL CONNECTIONIST NETWORKS; TAXONOMY;
D O I
10.1007/s00521-009-0290-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel hierarchical hybrid neural model to the problem of long-term load forecasting is proposed in this paper. The neural model is made up of two self-organizing map nets-one on top of the other-and a single-layer perceptron. It has application into domains which require time series analysis. The model is compared to a mutilated architecture of it, and to a multilayer perceptron. The hierarchical, the mutilated, and the multilayer perceptron models are trained and assessed on load data extracted from a North-American electric utility. They are required to predict either once every week or once every month the electric peak-load during the next two years. The results from the experiments show that the performance of HHNM on long-term load forecasts is better than that of the mutilated model, and much better than that of the MLP model.
引用
收藏
页码:1057 / 1063
页数:7
相关论文
共 50 条
  • [1] A hierarchical hybrid neural model with time integrators in long-term load forecasting
    Otávio A. S. Carpinteiro
    Isaías Lima
    Edmilson M. Moreira
    Carlos A. M. Pinheiro
    Enzo Seraphim
    J. Vantuil L. Pinto
    Neural Computing and Applications, 2009, 18 : 1057 - 1063
  • [2] A hierarchical hybrid neural model with time integrators in long-term peak-load forecasting
    Carpinteiro, OAS
    Leme, RC
    de Souza, ACZ
    Quintanilha, PS
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 2960 - 2965
  • [3] Long-term load forecasting via a hierarchical neural model with time integrators
    Carpinteiro, Otavio A. S.
    Leme, Rafael C.
    de Souza, Antonio C. Zambroni
    Pinheiro, Carlos A. M.
    Moreira, Edmilson M.
    ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (3-4) : 371 - 378
  • [4] A hierarchical neural model with time windows in long-term electrical load forecasting
    Carpinteiro, Otavio A. S.
    Lima, Isaias
    Leme, Rafael C.
    de Souza, Antonio C. Zambroni
    Moreira, Edmilson M.
    Pinheiro, Carlos A. M.
    NEURAL COMPUTING & APPLICATIONS, 2007, 16 (4-5): : 465 - 470
  • [5] A hierarchical neural model with time windows in long-term electrical load forecasting
    Otávio A. S. Carpinteiro
    Isaías Lima
    Rafael C. Leme
    Antonio C. Zambroni de Souza
    Edmilson M. Moreira
    Carlos A. M. Pinheiro
    Neural Computing and Applications, 2007, 16 : 465 - 470
  • [6] A hybrid neural model in long-term electrical load forecasting
    Carpinteiro, Otivio A. S.
    Lima, Isaias
    Leme, Rafael C.
    de Souza, Antonio C. Zambroni
    Moreira, Edmilson M.
    Pinheiro, Carlos A. M.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 717 - 725
  • [7] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    da Silva, APA
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 120 - 124
  • [8] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    Reis, AJR
    da Silva, APA
    APPLIED SOFT COMPUTING, 2004, 4 (04) : 405 - 412
  • [9] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    da Silva, APA
    Feichas, CHL
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 241 - 246
  • [10] Application of wavelet and neural network to long-term load forecasting
    Khoa, TQD
    Phuong, LM
    Binh, PTT
    Lien, NTH
    2004 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - POWERCON, VOLS 1 AND 2, 2004, : 840 - 844