Robust scalar-on-function partial quantile regression

被引:1
|
作者
Beyaztas, Ufuk [1 ,3 ]
Tez, Mujgan [1 ]
Lin Shang, Han [2 ]
机构
[1] Marmara Univ, Dept Stat, Kadikoy Istanbul, Turkiye
[2] Macquarie Univ, Dept Actuarial Studiesand Business Analyt, Sydney, Australia
[3] Marmara Univ, Dept Stat, TR-34722 Istanbul, Turkiye
关键词
Functional data; iteratively reweighting; partial quantile covariance; robust estimation; MULTIPLE-SCLEROSIS;
D O I
10.1080/02664763.2023.2202464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Compared with the conditional mean regression-based scalar-on-function regression model, the scalar-on-function quantile regression is robust to outliers in the response variable. However, it is susceptible to outliers in the functional predictor (called leverage points). This is because the influence function of the regression quantiles is bounded in the response variable but unbounded in the predictor space. The leverage points may alter the eigenstructure of the predictor matrix, leading to poor estimation and prediction results. This study proposes a robust procedure to estimate the model parameters in the scalar-on-function quantile regression method and produce reliable predictions in the presence of both outliers and leverage points. The proposed method is based on a functional partial quantile regression procedure. We propose a weighted partial quantile covariance to obtain functional partial quantile components of the scalar-on-function quantile regression model. After the decomposition, the model parameters are estimated via a weighted loss function, where the robustness is obtained by iteratively reweighting the partial quantile components. The estimation and prediction performance of the proposed method is evaluated by a series of Monte-Carlo experiments and an empirical data example. The results are compared favorably with several existing methods. The method is implemented in an R package robfpqr.
引用
收藏
页码:1359 / 1377
页数:19
相关论文
共 50 条
  • [21] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [22] Scalar-on-function regression: Estimation and inference under complex survey designs
    Smirnova, Ekaterina
    Ciu, Erjia
    Tabacu, Lucia
    Leroux, Andrew
    STATISTICS IN MEDICINE, 2024, 43 (23) : 4559 - 4574
  • [23] Wavelet-based scalar-on-function finite mixture regression models
    Ciarleglio, Adam
    Ogden, R. Todd
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 86 - 96
  • [24] Quantile Function on Scalar Regression Analysis for Distributional Data
    Yang, Hojin
    Baladandayuthapani, Veerabhadran
    Rao, Arvind U. K.
    Morris, Jeffrey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 90 - 106
  • [25] A robust functional partial least squares for scalar-on-multiple-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (04)
  • [26] A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data
    Shang, Han Lin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 95 - 104
  • [27] A Bayesian semi-parametric scalar-on-function regression with measurement error using instrumental variables
    Zoh, Roger S.
    Luan, Yuanyuan
    Xue, Lan
    Allison, David B.
    Tekwe, Carmen D.
    STATISTICS IN MEDICINE, 2024, 43 (21) : 4043 - 4054
  • [28] Partial quantile regression
    Dodge, Yadolah
    Whittaker, Joe
    METRIKA, 2009, 70 (01) : 35 - 57
  • [29] Partial quantile regression
    Yadolah Dodge
    Joe Whittaker
    Metrika, 2009, 70 : 35 - 57
  • [30] High-Dimensional Spatial Quantile Function-on-Scalar Regression
    Zhang, Zhengwu
    Wang, Xiao
    Kong, Linglong
    Zhu, Hongtu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1563 - 1578