Scalar-on-function regression: Estimation and inference under complex survey designs

被引:0
|
作者
Smirnova, Ekaterina [1 ]
Ciu, Erjia [2 ]
Tabacu, Lucia [3 ]
Leroux, Andrew [4 ]
机构
[1] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA USA
[2] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Epidemiol, Dept Biostat, Baltimore, MD USA
[3] Old Dominion Univ, Dept Math & Stat, Norfolk, VA USA
[4] Univ Colorado Anschutz Med Campus, Dept Biostat & Bioinformat, Aurora, CO USA
基金
美国国家卫生研究院;
关键词
accelerometry; complex survey design; functional regression; NHANES; ASYMPTOTIC CONFIDENCE BANDS; VARIANCE-ESTIMATION; PHYSICAL-ACTIVITY;
D O I
10.1002/sim.10194
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasingly, large, nationally representative health and behavioral surveys conducted under a multistage stratified sampling scheme collect high dimensional data with correlation structured along some domain (eg, wearable sensor data measured continuously and correlated over time, imaging data with spatiotemporal correlation) with the goal of associating these data with health outcomes. Analysis of this sort requires novel methodologic work at the intersection of survey statistics and functional data analysis. Here, we address this crucial gap in the literature by proposing an estimation and inferential framework for generalizable scalar-on-function regression models for data collected under a complex survey design. We propose to: (1) estimate functional regression coefficients using weighted score equations; and (2) perform inference using novel functional balanced repeated replication and survey-weighted bootstrap for multistage survey designs. This is the first frequentist study to discuss the estimation of scalar-on-function regression models in the context of complex survey studies and to assess the validity of various inferential techniques based on re-sampling methods via a comprehensive simulation study. We implement our methods to predict mortality using diurnal activity profiles measured via wearable accelerometers using the National Health and Nutrition Examination Survey 2003-2006 data. The proposed computationally efficient methods are implemented in R software package surveySoFR.
引用
收藏
页码:4559 / 4574
页数:16
相关论文
共 50 条
  • [1] Methods for Scalar-on-Function Regression
    Reiss, Philip T.
    Goldsmith, Jeff
    Shang, Han Lin
    Ogden, R. Todd
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (02) : 228 - 249
  • [2] On partial least-squares estimation in scalar-on-function regression models
    Saricam, Semanur
    Beyaztas, Ufuk
    Asikgil, Baris
    Shang, Han Lin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (12)
  • [3] A comparison of testing methods in scalar-on-function regression
    Tekbudak, Merve Yasemin
    Alfaro-Cordoba, Marcela
    Maity, Arnab
    Staicu, Ana-Maria
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 411 - 436
  • [4] Scalar-on-function local linear regression and beyond
    Ferraty, F.
    Nagy, S.
    BIOMETRIKA, 2022, 109 (02) : 439 - 455
  • [5] Estimator selection and combination in scalar-on-function regression
    Goldsmith, Jeff
    Scheipl, Fabian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 362 - 372
  • [6] Robust scalar-on-function partial quantile regression
    Beyaztas, Ufuk
    Tez, Mujgan
    Lin Shang, Han
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1359 - 1377
  • [7] A robust scalar-on-function logistic regression for classification
    Mutis, Muge
    Beyaztas, Ufuk
    Simsek, Gulhayat Golbasi
    Shang, Han Lin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8538 - 8554
  • [8] A comparison of testing methods in scalar-on-function regression
    Merve Yasemin Tekbudak
    Marcela Alfaro-Córdoba
    Arnab Maity
    Ana-Maria Staicu
    AStA Advances in Statistical Analysis, 2019, 103 : 411 - 436
  • [9] Selecting the derivative of a functional covariate in scalar-on-function regression
    Hooker, Giles
    Shang, Han Lin
    STATISTICS AND COMPUTING, 2022, 32 (03)
  • [10] Selecting the derivative of a functional covariate in scalar-on-function regression
    Giles Hooker
    Han Lin Shang
    Statistics and Computing, 2022, 32