Symmetric Maximal Condorcet Domains

被引:4
|
作者
Karpov, Alexander [1 ,2 ]
Slinko, Arkadii [3 ]
机构
[1] HSE Univ, Moscow, Russia
[2] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[3] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
关键词
Majority voting; Condorcet paradox; Condorcet domains; Median graph; Composition of domains; Simple permutations; LINEAR ORDERS; ACYCLIC SETS; PERMUTATIONS; THEOREM; GRAPHS;
D O I
10.1007/s11083-022-09612-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the operation of composition of domains and show that it reduces the classification of symmetric maximal Condorcet domains to the indecomposable ones. The only non-trivial indecomposable symmetric maximal domains known are the domains consisting of four linear orders examples of which were given by Raynaud (1981) and Danilov and Koshevoy (Order 30(1), 181-194 2013). We call them Raynaud domains and we classify them in terms of simple permutations, a well-researched combinatorial object. We hypothesise that no other indecomposable symmetric maximal domains exist.
引用
收藏
页码:289 / 309
页数:21
相关论文
共 50 条
  • [1] Symmetric Maximal Condorcet Domains
    Alexander Karpov
    Arkadii Slinko
    Order, 2023, 40 : 289 - 309
  • [2] Maximal Condorcet Domains
    Vladimir I. Danilov
    Gleb A. Koshevoy
    Order, 2013, 30 : 181 - 194
  • [3] Maximal Condorcet Domains
    Danilov, Vladimir I.
    Koshevoy, Gleb A.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (01): : 181 - 194
  • [4] Maximal Condorcet domains. A further
    Puppe, Clemens
    Slinko, Arkadii
    GAMES AND ECONOMIC BEHAVIOR, 2024, 145 : 426 - 450
  • [5] A classification of peak-pit maximal Condorcet domains
    Li, Guanhao
    MATHEMATICAL SOCIAL SCIENCES, 2023, 125 : 42 - 57
  • [6] Towards a classification of maximal peak-pit Condorcet domains
    Li, Guanhao
    Puppe, Clemens
    Slinko, Arkadii
    MATHEMATICAL SOCIAL SCIENCES, 2021, 113 : 191 - 202
  • [7] A characterization of preference domains that are single-crossing and maximal Condorcet
    Slinko, Arkadii
    Wu, Qinggong
    Wu, Xingye
    ECONOMICS LETTERS, 2021, 204
  • [8] Sums of Magnetic Eigenvalues are Maximal on Rotationally Symmetric Domains
    Laugesen, Richard S.
    Liang, Jian
    Roy, Arindam
    ANNALES HENRI POINCARE, 2012, 13 (04): : 731 - 750
  • [9] Sums of Magnetic Eigenvalues are Maximal on Rotationally Symmetric Domains
    Richard S. Laugesen
    Jian Liang
    Arindam Roy
    Annales Henri Poincaré, 2012, 13 : 731 - 750
  • [10] Condorcet domains of tiling type
    Danilov, Vladimir I.
    Karzanov, Alexander V.
    Koshevoy, Gleb
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 933 - 940