Maximal Condorcet domains. A further

被引:0
|
作者
Puppe, Clemens [1 ]
Slinko, Arkadii [2 ]
机构
[1] Karlsruhe Inst Technol KIT, Dept Econ & Management, Karlsruhe, Germany
[2] Univ Auckland, Dept Math, Auckland, New Zealand
关键词
Condorcet domains; Social choice; Majority voting; Preference aggregation; Strategy-proofness; STRATEGY-PROOFNESS; LINEAR ORDERS; ACYCLIC SETS; PREFERENCES; PERMUTATIONS; CHOICE;
D O I
10.1016/j.geb.2024.04.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
Condorcet domains are sets of preference orders such that the majority relation corresponding to any profile of preferences from the domain is acyclic. The best known examples in economics are the single -peaked, the single -crossing, and the group separable domains. We survey the latest developments in the area since Monjardet's magisterial overview (2009), provide some new results and offer two conjectures concerning unsolved problems. The main goal of the presentation is to illuminate the rich internal structure of the class of maximal Condorcet domains. In an appendix, we present the complete classification of all maximal Condorcet domains on four alternatives obtained by Dittrich (2018).
引用
收藏
页码:426 / 450
页数:25
相关论文
共 50 条
  • [1] Maximal Condorcet Domains
    Danilov, Vladimir I.
    Koshevoy, Gleb A.
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (01): : 181 - 194
  • [2] Maximal Condorcet Domains
    Vladimir I. Danilov
    Gleb A. Koshevoy
    [J]. Order, 2013, 30 : 181 - 194
  • [3] Symmetric Maximal Condorcet Domains
    Alexander Karpov
    Arkadii Slinko
    [J]. Order, 2023, 40 : 289 - 309
  • [4] Symmetric Maximal Condorcet Domains
    Karpov, Alexander
    Slinko, Arkadii
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (02): : 289 - 309
  • [5] A classification of peak-pit maximal Condorcet domains
    Li, Guanhao
    [J]. MATHEMATICAL SOCIAL SCIENCES, 2023, 125 : 42 - 57
  • [6] Towards a classification of maximal peak-pit Condorcet domains
    Li, Guanhao
    Puppe, Clemens
    Slinko, Arkadii
    [J]. MATHEMATICAL SOCIAL SCIENCES, 2021, 113 : 191 - 202
  • [7] A characterization of preference domains that are single-crossing and maximal Condorcet
    Slinko, Arkadii
    Wu, Qinggong
    Wu, Xingye
    [J]. ECONOMICS LETTERS, 2021, 204
  • [8] Coexisting Lipid Domains.
    Pabst, Georg
    Boulgaropoulos, Beate
    Sarangi, Bibhu R.
    Laggner, Peter
    Raghunathan, Velayudhan A.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2009, 65 : S120 - S120
  • [9] Condorcet domains of tiling type
    Danilov, Vladimir I.
    Karzanov, Alexander V.
    Koshevoy, Gleb
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 933 - 940
  • [10] Condorcet choice functions and maximal elements
    Subiza, B
    Peris, JE
    [J]. SOCIAL CHOICE AND WELFARE, 2005, 24 (03) : 497 - 508