Symmetric Maximal Condorcet Domains

被引:4
|
作者
Karpov, Alexander [1 ,2 ]
Slinko, Arkadii [3 ]
机构
[1] HSE Univ, Moscow, Russia
[2] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[3] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
关键词
Majority voting; Condorcet paradox; Condorcet domains; Median graph; Composition of domains; Simple permutations; LINEAR ORDERS; ACYCLIC SETS; PERMUTATIONS; THEOREM; GRAPHS;
D O I
10.1007/s11083-022-09612-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the operation of composition of domains and show that it reduces the classification of symmetric maximal Condorcet domains to the indecomposable ones. The only non-trivial indecomposable symmetric maximal domains known are the domains consisting of four linear orders examples of which were given by Raynaud (1981) and Danilov and Koshevoy (Order 30(1), 181-194 2013). We call them Raynaud domains and we classify them in terms of simple permutations, a well-researched combinatorial object. We hypothesise that no other indecomposable symmetric maximal domains exist.
引用
收藏
页码:289 / 309
页数:21
相关论文
共 50 条