Learning relations in human-like style for few-shot fine-grained image classification

被引:2
|
作者
Li, Shenming [1 ,2 ,3 ]
Feng, Lin [1 ]
Xue, Linsong [2 ]
Wang, Yifan [1 ,3 ]
Wang, Dong [3 ]
机构
[1] Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo, Peoples R China
关键词
Fine-grained classification; Few-shot classification; Key-part detector; Structure encoder; Metric-based learning;
D O I
10.1007/s13042-021-01473-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained classification is a challenging problem with small inter-class variance and large intra-class variance. It becomes more difficult when only a few labeled training samples are available. Inspired by the procedure of human recognition that two similar objects are usually distinguished by comparing their key parts, we develop a novel few-shot fine-grained classification method, which learns to model the inter-class boundaries in human-like style, i.e., extracting key-part structure information of objects and performing part-by-part comparison. To this end, we first extract the key parts of objects by using the designed key-part detector, which are then encoded by our structure encoder for the final comparison. To tackle with the scarce labeled samples, we train the proposed network under the metric-based few-shot learning methodology. Experiments on benchmark datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art counterparts. Besides, extensive investigations are conducted to verify the contributions of the key components of our method.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 50 条
  • [21] A few-shot fine-grained image classification method leveraging global and local structures
    Siyu Cao
    Wen Wang
    Jing Zhang
    Min Zheng
    Qingyong Li
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 2273 - 2281
  • [22] BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification
    Li, Xiaoxu
    Wu, Jijie
    Sun, Zhuo
    Ma, Zhanyu
    Cao, Jie
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 1318 - 1331
  • [23] Structural Subspace Learning for Few-shot Fine-grained Recognition
    Li, Linjia
    Deng, Jin
    Huang, Ying
    Chen, Yanyan
    Luo, Wei
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 693 - 699
  • [24] Multi-attention Meta Learning for Few-shot Fine-grained Image Recognition
    Zhu, Yaohui
    Liu, Chenlong
    Jiang, Shuqiang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1090 - 1096
  • [25] Self-reconstruction network for fine-grained few-shot classification
    Li, Xiaoxu
    Li, Zhen
    Xie, Jiyang
    Yang, Xiaochen
    Xue, Jing-Hao
    Ma, Zhanyu
    PATTERN RECOGNITION, 2024, 152
  • [26] Feature fusion network based on few-shot fine-grained classification
    Yang, Yajie
    Feng, Yuxuan
    Zhu, Li
    Fu, Haitao
    Pan, Xin
    Jin, Chenlei
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [27] Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot Image Classification
    Wu, Jijie
    Chang, Dongliang
    Sain, Aneeshan
    Li, Xiaoxu
    Ma, Zhanyu
    Cao, Jie
    Guo, Jun
    Song, Yi-Zhe
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 2821 - 2829
  • [28] Few-shot image classification using graph neural network with fine-grained feature descriptors
    Ganesan, Priyanka
    Jagatheesaperumal, Senthil Kumar
    Hassan, Mohammad Mehedi
    Pupo, Francesco
    Fortino, Giancarlo
    NEUROCOMPUTING, 2024, 610
  • [29] Adaptive Task-Aware Refining Network for Few-Shot Fine-Grained Image Classification
    Yu, Liyun
    Guan, Ziyu
    Zhao, Wei
    Yang, Yaming
    Tan, Jiale
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2301 - 2314
  • [30] Dual-Path Feature Extraction and Metrics for Few-Shot Fine-Grained Image Classification
    Ji Z.
    Wu Y.
    Wang X.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (02): : 137 - 146