Few-shot image classification using graph neural network with fine-grained feature descriptors

被引:1
|
作者
Ganesan, Priyanka [1 ]
Jagatheesaperumal, Senthil Kumar [2 ]
Hassan, Mohammad Mehedi [3 ]
Pupo, Francesco [4 ]
Fortino, Giancarlo [4 ]
机构
[1] Mepco Schlenk Engn Coll, Dept Comp Sci & Engn, Sivakasi 626005, India
[2] Mepco Schlenk Engn Coll, Dept Elect & Commun Engn, Sivakasi 626005, India
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[4] Univ Calabria, Dept Informat Modeling Elect & Syst, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Few-shot learning; Graph neural networks; Fine-grained feature descriptors; Image classification; OBJECT; ATTENTION;
D O I
10.1016/j.neucom.2024.128448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph computation via Graph Neural Networks (GNNs) is emerging as a pivotal approach for addressing the challenges in image classification tasks. This paper introduces a novel strategy for image classification using minimal labeled data from the mini-ImageNet database. The primary contributions include the development of an innovative Fine-Grained Feature Descriptor (FGFD) module. Following this, the GNN is employed at a more granular level to enhance image classification efficiency. Additionally, ablation studies were conducted in conjunction with existing state-of-the-art systems for few-shot image classification. Comparative analyses were performed, and the simulation results demonstrate that the proposed method significantly improves classification accuracy over traditional few-shot image classification methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An Unbiased Feature Estimation Network for Few-Shot Fine-Grained Image Classification
    Wang, Jiale
    Lu, Jin
    Yang, Junpo
    Wang, Meijia
    Zhang, Weichuan
    SENSORS, 2024, 24 (23)
  • [2] Power Normalizations in Fine-Grained Image, Few-Shot Image and Graph Classification
    Koniusz, Piotr
    Zhang, Hongguang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 591 - 609
  • [3] Feature fusion network based on few-shot fine-grained classification
    Yang, Yajie
    Feng, Yuxuan
    Zhu, Li
    Fu, Haitao
    Pan, Xin
    Jin, Chenlei
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [4] Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot Image Classification
    Wu, Jijie
    Chang, Dongliang
    Sain, Aneeshan
    Li, Xiaoxu
    Ma, Zhanyu
    Cao, Jie
    Guo, Jun
    Song, Yi-Zhe
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 2821 - 2829
  • [5] Fine-Grained Few-Shot Image Classification Based on Feature Dual Reconstruction
    Liu, Shudong
    Zhong, Wenlong
    Guo, Furong
    Cong, Jia
    Gu, Boyu
    ELECTRONICS, 2024, 13 (14)
  • [6] Variational Feature Disentangling for Fine-Grained Few-Shot Classification
    Xu, Jingyi
    Le, Hieu
    Huang, Mingzhen
    Athar, ShahRukh
    Samaras, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8792 - 8801
  • [7] Few-Shot Fine-Grained Image Classification via GNN
    Zhou, Xiangyu
    Zhang, Yuhui
    Wei, Qianru
    SENSORS, 2022, 22 (19)
  • [8] Few-Shot Fine-Grained Image Classification: A Comprehensive Review
    Ren, Jie
    Li, Changmiao
    An, Yaohui
    Zhang, Weichuan
    Sun, Changming
    AI, 2024, 5 (01) : 405 - 425
  • [9] Global and Local Attention Embedding Network for Few-Shot Fine-Grained Image Classification
    Hu, Jiayuan
    Own, Chung-Ming
    Tao, Wenyuan
    WEB AND BIG DATA, PT I, APWEB-WAIM 2020, 2020, 12317 : 740 - 747
  • [10] BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification
    Li, Xiaoxu
    Wu, Jijie
    Sun, Zhuo
    Ma, Zhanyu
    Cao, Jie
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 1318 - 1331